(浙江专用)2020版高考数学一轮总复习专题11计数原理11.2二项式定理课件.pptx
《(浙江专用)2020版高考数学一轮总复习专题11计数原理11.2二项式定理课件.pptx》由会员分享,可在线阅读,更多相关《(浙江专用)2020版高考数学一轮总复习专题11计数原理11.2二项式定理课件.pptx(11页珍藏版)》请在麦多课文档分享上搜索。
1、高考数学(浙江专用),11.2 二项式定理,考点 二项式定理及其应用,考点清单,考向基础 1.二项式定理:(a+b)n= an+ an-1b1+ an-rbr+ bn(nN*).这个公 式所表示的定理叫做二项式定理. 2.几个基本概念 (1)二项展开式:二项式定理中的公式右边的多项式叫做(a+b)n的二项展 开式. (2)项数:二项展开式中共有n+1项. (3)二项式系数:在二项展开式中各项的系数 (r=0,1,2,n)叫做 二项式系数.,(4)通项:二项展开式中的 an-rbr 叫做二项展开式的通项,用Tr+1表 示,即通项为展开式的第r+1项:Tr+1= an-rbr(r=0,1,n).
2、3.在二项式定理中,如果设a=1,b=x,则得到公式:(1+x)n=1+ x+ x2+ x3 + xn.如果设a=1,b=-x,则得到公式:(1-x)n=1+(-1)1 x+(-1)2 x2+(- 1)n xn. 4.二项式系数与项的系数是不同的,如(a+bx)n(a,bR)的展开式中,第r+1 项的二项式系数是 ,而第r+1项的系数为 an-rbr. 5.通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式 的某一项或系数.在运用公式时要注意以下几点: (1) an-kbk是第k+1项,而不是第k项; (2)运用通项公式Tk+1= an-kbk解题时,一般都需先转化为方程(组)求
3、出n、k,然后代入通项公式求解;,(3)求展开式的一些特殊项,通常都是由题意列方程求出k,再求所需的某 项;有时需要求n,计算时要注意n和k的取值范围及它们之间的大小关系. 6.在(a+b)n的展开式中,令a=b=1,得 + + =2n;令a=1,b=-1,得 - + - +=0, + + += + + +=2n-1. 7.对二项式系数性质的理解 (1)对称性:由组合数的性质“ = ”,得从“ = =1”开始,由左右 分别向中间靠拢,便有 = , = , (2)最大值:当n为偶数时,(a+b)n的展开式共有n+1项,n+1是奇数,这时展 开式的形式是,中间一项是第 +1项,它的二项式系数是 ,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用 2020 高考 数学 一轮 复习 专题 11 计数 原理 112 二项式 定理 课件 PPTX
