[考研类试卷]考研数学一(概率论与数理统计)模拟试卷66及答案与解析.doc
《[考研类试卷]考研数学一(概率论与数理统计)模拟试卷66及答案与解析.doc》由会员分享,可在线阅读,更多相关《[考研类试卷]考研数学一(概率论与数理统计)模拟试卷66及答案与解析.doc(15页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(概率论与数理统计)模拟试卷 66 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设随机事件 A 与 B 为对立事件,0P(A)1,则一定有(A)0P(A B)1(B) 0P(B)1(C) 0P(AB) 1(D)0P( )12 A,B,C 三个随机事件必相互独立,如果它们满足条件(A)A,B,C 两两独立(B) P(ABC)=P(A)P(B)P(C) P(AB)=1(D)P(AB)=03 设随机变量 X 的概率分布为 PX=k=a ,k=0,1,2,则常数 a=4 已知随机变量(X,Y) 在区域 D=(x,y)|1x1,1y1 上服从均匀分布,则(A)
2、PX+Y0=1 4(B) PX Y0=14(C) Pmax(X,Y)0=14(D)Pmin(X,Y)0=145 设 X1,X 2,X n,相互独立且都服从参数为 (0)的泊松分布,则当n时以 (x)为极限的是6 设 X1,X 2,X n 是取自总体 X 的简单随机样本,记 EX=,DX= 2,)2,DS0,则(A)S 是 的无偏估计(B) S2 是 2 的无偏估计(C) 是 2 的无偏估计(D) Xi2 是 EX2 的无偏估计二、填空题7 设离散型随机变量 X 的分布函数 F(x)= 则随机变量|X|的分布函数为_8 设 F(x)是连续型随机变量 X 的分布函数,常数 a0,则 +F(x+a)
3、F(x)dx=_9 设(X,Y) N(,; 2, 2;0) ,则 PXY=_10 两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击如果第 i 名射手每次命中的概率为 pi(0p i1,i=1,2),则两射手均停止射击时脱靶(未命中) 总数的数学期望为_11 设总体 X 服从参数为 p 的 01 分布,则来自总体 X 的简单随机样本X1,X 2,X n 的概率分布为_三、解答题解答应写出文字说明、证明过程或演算步骤。12 铁路一编组站随机地编组发往三个不同地区 E1,E 2 和 E3 的各 2 节、3 节和 4 节车皮,求发往同一地区的车皮恰好相邻的概率 p13 三人独立地
4、同时破译一个密码,他们每人能够译出的概率分别为15,13,14求此密码能被译出的概率 p14 设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为01,02,03,若各部件的状态相互独立,求同时需调整的部件数 X 的分布函数15 已知随机变量 X 的概率密度 ()求分布函数 F(x);()若令 Y=F(X),求 Y 的分布函数 FY(y)16 设随机变量 X 与 Y 相互独立,且都在0,1上服从均匀分布,试求: ()U=XY 的概率密度 fU(u); ( )V=|XY| 的概率密度 fV(v)17 设 X 和 Y 是相互独立的随机变量,其概率密度分别为其中 0, 0 是常数,引入随机
5、变量 求 E(Z)和 D(Z)18 将一颗骰子重复投掷 n 次,随机变量 X 表示出现点数小于 3 的次数,Y 表示出现点数不小于 3 的次数求 3X+Y 与 X3Y 的相关系数19 假设排球运动员的平均身高(单位:厘米)为 ,标准差为 4求 100 名排球运动员的平均身高与所有排球运动员平均身高之差在(1,1)内的概率20 设总体 X 和 Y 相互独立,分别服从 N(, 12),N(, 22)X 1,X 2,X m 和Y1,Y 2,Y n 是分别来自 X 和 Y 的简单随机样本,其样本均值分别为 样本方差分别为 SX2,S Y2令 Z= 求 EZ21 设总体 XN(, 2), X1,X 2,
6、X n(n=16)是来自 X 的简单随机样本,求下列概率:()P 221 n (Xi) 222;()P 221n (Xi )222.22 设 X 服从a,b上的均匀分布, X1,X n 为简单随机样本,求 a,b 的最大似然估计量22 设总体 X 在区间0,上服从均匀分布,X 1,X 2,X n 是取自总体 X 的简单随机样本, Xi,X (n)=max(X1,X n)23 求 的矩估计量和最大似然估计量;24 求常数 a, b,使 =bX(n)均为 的无偏估计,并比较其有效性;25 应用切比雪夫不等式证明: 均为 的一致性(相合性)估计26 在测量反应时间中假设反应时间服从正态分布,一心理学
7、家估计的标准差是005 秒为了以 95的置信度使他对平均反应时间的估计误差不超过 001 秒,应取的样本容量 n 为多少?考研数学一(概率论与数理统计)模拟试卷 66 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 B【试题解析】 因 A、B 为对立事件,即 AB=,AB= ,所以 P(AB)=0,P( )=0,且 P(A)+P(B)=P(AB)=1因此(A),(C),(D) 均不成立,应选(B) 【知识模块】 概率论与数理统计2 【正确答案】 C【试题解析】 由三个事件相互独立的条件可知,(A)与(B)显然不对对于(C) :由P(AB)=1 )=1,
8、即 P(B)=0下面验证当 P(A)=P(A)=P(B)=0 时,它们是否满足四个等式:1)由 P(B)=0 P(AB)P(B)=0 P(AB)=0=P(A)P(B);2)由 P(B)=0 P(BC)P(B)=0 P(BC)=0=P(B)P(C);3)由 P( P(AC)=P(AC)+P(C)=P(C)=P(C)P(A)由以上 1),2) ,3) 可知 A,B,C 两两独立4) 由 P(ABC)P(B)=0 P(ABC)=0=P(A)P(B)P(C)由以上可知,A ,B,C 满足四个等式,故选(C) 【知识模块】 概率论与数理统计3 【正确答案】 B【试题解析】 由泊松分布知,PX=k 当 a
9、(e+1)=1 即a= 时,XP(1),故应选 (B)【知识模块】 概率论与数理统计4 【正确答案】 D【试题解析】 由题设知(X,Y)的概率密度函数为由于 Pmin(X,Y)0=PX0,Y0=01dx0114dy=14,故选(D) 因Pmax(X,Y)0=1Pmax(X,Y)0=1PX0,Y0所以选项(A) 、(B)、(C)都不正确【知识模块】 概率论与数理统计5 【正确答案】 C【试题解析】 由于 X1,X 2,X n,相互独立同分布,其期望和方差都存在,且 E( Xi)=n,D( Xi)=n,因此当 n+时,P x以 (x)为极限,故应选(C)【知识模块】 概率论与数理统计6 【正确答案
10、】 B【试题解析】 从上题知 S2 是无偏估计,应选(B)进一步分析 DS=ES2(ES) 20(ES)2ES2=2 ES,【知识模块】 概率论与数理统计二、填空题7 【正确答案】 【试题解析】 由于分布函数 F(x)只在 x=1,0,1 处有 3 个间断点,因此离散型随机变量 X 与|X| 的概率分布分别为 |X|的分布函数 F|X|(x)为 F|X|(x)【知识模块】 概率论与数理统计8 【正确答案】 a【试题解析】 +F(x+a)F(x)dx= +xx+af(y)dydx +f(y)y aydy= +sf(y)dy=a【知识模块】 概率论与数理统计9 【正确答案】 12【试题解析】 由
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 概率论 数理统计 模拟 66 答案 解析 DOC
