NASA-TP-2382-1985 Wind-tunnel investigation of a full-scale canard-configured general aviation airplane《全比例鸭翼配置通用航空飞机的风洞研究》.pdf
《NASA-TP-2382-1985 Wind-tunnel investigation of a full-scale canard-configured general aviation airplane《全比例鸭翼配置通用航空飞机的风洞研究》.pdf》由会员分享,可在线阅读,更多相关《NASA-TP-2382-1985 Wind-tunnel investigation of a full-scale canard-configured general aviation airplane《全比例鸭翼配置通用航空飞机的风洞研究》.pdf(80页珍藏版)》请在麦多课文档分享上搜索。
1、Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-_:_._._,_._-_,_,_.:_. , !_i,_ _-_t_;_:_,_;_._, _._,_._“_._,_ _,_i_ .!_.“-_._:_, _.“.;“_._“ -_:_ _._ _._“ ,_“_i_ ,_:_._!:_,._:_,._?i_“(:_,_ _. _,._ NASA _,i._ TechnicalPaperi. 2382:,i 1985I_ Wind-Tunnel
2、Investigation ofi- a FuU-Scale Canard-Configured_General Aviation Airplane_. Long P. YipLangley Research CenterHampto n, Virginia4N/ANahonal Aeronauhcsand Space AdministrationScientific and TechnicalInformation BranchProvided by IHSNot for ResaleNo reproduction or networking permitted without licens
3、e from IHS-,-,-i_ Summary Introduction_“ As part Of the aeronautics program in the areaI An investigationwas conductedintheLangley30- ofstall/spinresearchattheLangleyResearchCen_r, by60-1t0otTunneltodeterminetheaerodynamicchar- wind-tunneltestswereconductedtoassessand _ocu-i acteristicsofa powered,f
4、ull-scalemodel ofa general ment theaerOdynamiccharacteristicsofa canardcon-aviationairplaneemployinga canard.Althoughpri_ figurationdesignedforgeneralaviationuse.Inthemid-mary emphasisoftheinvestigationwaS placedon eval- 1970s,a new homebuiltairplanedesign,theV_riEzeuatingthe aerodynamicperformancea
5、nd the stabil-i. . ityand controlcharacteristicsof thebasicconfigura- (ref.I),made asignificantimpacton thegeneralavia-tioncommunitybecauseOfitscanarddesignand otheri_ tion,testswere alsoconductedto studythe foliow_ advancedfeatures.Theseadvancedfeaturesincludedingeffectsofvaryingthebasicconfigurati
6、on:effectofReynoldsnumber;effectofcanard;effectofoutboard useofcompositeconstructionforlighterweightand for wingleading-edgedroop;effectofcenter-of-gravityIo- smoothersurfacecontourstoimproveaerodynamicper-formance,useofwingletson themain wing fordirec-i Cation; effeCt of elevator trim; effect of la
7、nding gear;effect of lateral-d:rectional controls; effect of power; el- tional stability and, at the same time, for reducing drag,Ii fectoffixedtransition;effectofwaterspray;effectsof and useofa canardsurfacetoincreasepitchstabilitynearstallsothatthemaximum trimangleofattackwas: canardincidence,cana
8、rdairfoilsection,and canardpo- lessthanwingstallangleofattack.sition;and effectsofwingletsand Upper wingletsize.Thisreportpresentsresultsofa full-scaleresearchAdditionalaspectsofthestudyweretodeterminetheboundary-layertransitioncharacteristicsoftheairfoil modeloftheVariEzedesigntestedintheLangley30-
9、.byi 60-FootTunnelforwhichpreliminaryresultswerere-. surfacesand theeffectoffixing theboundarylayertobe turbulentby means ofa transitionstripnearthe portedinreference2.Testdataobtainedincludedmea-_ surementsofaerodynamicforcesandmoments oftheto-i leadingedge. The testswereconductedatReynoldsnumbers
10、from0.60 i0e to2.25x I0_,basedo the. talconfiguration,isolatedloadson thecanard,pressurewing mean aerodynamic chord, at angles of attack from. distributions, propeller torque-thruSt loads, and flow vi- !i sUalizationusingtuftsandsublimatingchemicals.Also- _.i -4.5to41.5,and atanglesof.sideslipfrom-1
11、5 to includedinthestudywereeffectofReynoldsnumber;i 15% effectofcanard;effectofoutboardwing leading-edge.The investigation indicated that employing the ca- droop; effect of center-of-gravity location; effect of el-n_.rd on this configuration was effective in providing in- evator trim; effect of land
12、ing gear; effect of lateral-.creasedstalldepartureresistancebecausethecanard, directionalcontrols;effectof power;effectoffixedtran-stalledbeforethe.wingstalled.Influenceofthecanard sition;effectofwaterspray;effectsofcanardincidence,flow field on the wing decreased the inboard loading canard airfoil
13、section, and canard position; and effects _.ofthewing as theoutboardloadingofthewing in- ofwingletsand upperwingletsize.creased.The increasedoutboardloadingand spanwiseflowdevelopmenton the wing causedwing tipstall. SymbolsThe additiOnofawingoutboardleading-edgedroopin-creasedstallangleofattackand i
14、ncreasedpitchstability Alllongitudinalforccsand moments arereferredtoat10wtomoderateanglesofattack.From testsusinga thewind axissystem,and alllateral-directi0nalforces-chemicalsublimationtechnique,thenaturalboundary- - and moments arereferredto the body axissystem._ layertransitionwas fOundtobe at55
15、 percentchord UnlessOtherwisenoted,total-airplaneand canardtoo-i: ofthecanard.Fixingtransitionneartheleadingedge mentsarepresentedwithrespecttoacenter-of-gravityofthecanardresultedina significantreductionoflift locationatfuselagestation99,whichwas0.71eaheadofdue toflowseparationnearthetrailingedgeof
16、theca_ theleadingedgeofthewingmean aerodynamicchord_,nardand,subsequently,a nose-downtrimchangeand and ataverticallocationon waterline16.Also,unless; loss of elevator effectiveness. Variations in the canard otherwise noted, total-airplane and canard aerodynamicairfoil showed that the canard airfoil-
17、section character- coefficients were reduced by using a wing reference areaistics can strongly affect the airplane stall and poststaU based on the trapezoidal planform of the wing projectedcharacteristics. Moving the canard to a lower position to the fuselage centerline.had little effect on the stat
18、ic longitudinal and lateral-d_rectmnal aerodynamic characteristics of this confign- . . b wing span, 22.17 ft_ ration. The lateral-directional stability was generally b_ upper winglet span, fti ! satisfactory, but the directional stability became weak_ at high angles of attack. Larger upper winglets
19、 pro- Co total airplane drag coefficienL-!, sided significant increases in directional stability of the .configuration. CD,d canarddragcoefficient,Canard balancedra|g, qS!Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-_ _ ?/_ _i_ :_ _i _ _i_/_ _!_ .
20、_ _ _:_ _i/_! _ _ _ _ _Y_!_2_?/_ _!_!i_ii_i!,_i_,_,;-_._,._,_:_.,._,-. . ,.,.t!III_“ CD,! skin-frlction drag coefficient, Skfn.frlct|ondraI NI exposed canard area, ft2q$i_ C_. total-airplane lift coefficient, _j_ V free, stream velocity, ft/secV/nd propeller advance ratio, V/(Propeller rotation_ CL,
21、c canard lift coefficient based on wing reference_. speed Propeller diameter)I area, canard b_l_n_ellft (CL in computer-q8generated figures) z chordwise distance from leading edge, ftI C_, c canard lift coefficient based on canard plan- (z/C)T boundary-layer transition locationI form area, Cbx_ardba
22、lance lift_S, _ spanwise distance from plane of symmetry, ft. I_: CL,_ lift coefficient at zero angle of attack y_ distance along winglet span, ft “!, CLo lift-curve slope, p:r degree (_ angle of attack relative to WL, deg/_ angle of sideslip, degC_ rolllng-moment coefficient, Roll_n_momentq8_. ACv
23、incremental drag coefficientf C_ rolling moment due to sideslip, per degreeAC_ incremental rolling-moment coefficientCm total-airplane pitching-moment coefficient, ACn incremental yawing-moment coefficienti. “ Pit_hin_ momentqse AC_ incremental side-force coefficientC._,c canard pitching-moment coef
24、ficient relative to_ airplane e.g., Canardbalancepltchin_ moment _ aileron deflection based on a setting of equal :_e and opposite deflection, positive when righti coefficient atzero of aileron is down, degC,_,o pitching-momentangleattack _ elevator deflection, positive trailing edgeCm. slope of pit
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASATP23821985WINDTUNNELINVESTIGATIONOFAFULLSCALECANARDCONFIGUREDGENERALAVIATIONAIRPLANE 比例 配置 通用 航空

链接地址:http://www.mydoc123.com/p-836969.html