NASA-TN-D-7411-1974 Free-flight investigation of the stability and control characteristics of a STOL model with an externally blown jet flap《带有外部吹制喷气襟翼短距离起落飞机模型稳定性和控制特性的自由飞行研究》.pdf
《NASA-TN-D-7411-1974 Free-flight investigation of the stability and control characteristics of a STOL model with an externally blown jet flap《带有外部吹制喷气襟翼短距离起落飞机模型稳定性和控制特性的自由飞行研究》.pdf》由会员分享,可在线阅读,更多相关《NASA-TN-D-7411-1974 Free-flight investigation of the stability and control characteristics of a STOL model with an externally blown jet flap《带有外部吹制喷气襟翼短距离起落飞机模型稳定性和控制特性的自由飞行研究》.pdf(84页珍藏版)》请在麦多课文档分享上搜索。
1、NASA TECHNICAL NOTE NASA TN D-7411I-(NASA-TN-D-7411) FREE-FLIGHT N74-21649INVESTIGATION OF THE STABILITY ANDCONTROL CHARACTERISTICS OF A STOL BODELWITH AN EXTERNALLY BLOW1 JET FLAP (NASA) Unclasz-f p HC $4.00 CSCL 01B H1/02 37230FREE-FLIGHT INVESTIGATIONOF THE STABILITY AND CONTROLCHARACTERISTICS OF
2、 A STOL MODELWITH AN EXTERNALLY BLOWN JET FLAPbyLysle P. Parlett and Sandy J. Emerling 1112Langley Research Center 4 -and IArthur E. Phelps III /Langley Directorate, 2 9U.S. Army Air Mobility R and Arthur E. Phelps III, Langley Directorate, L-9148U.S. Army Air Mobility R therear elements, however, w
3、ere pivoted to permit deflections in the range from 300 to 700Symmetric deflection was used, of course, to vary the lift and drag capability of the model,while asymmetric deflection was used to provide a rolling moment to help trim therolling-moment asymmetry present with one engine inoperative. An
4、example of suchasymmetric deflection is illustrated in figure 2 (c) which indicates the asymmetricdeflection used in the flight tests with the left outboard engine inoperative.Longitudinal trim and control moments were provided by an all-movable horizontaltail, on which (1) the elevator was set at a
5、 constant deflection of -500 and (2) a 17-percentleading-edge flap was installed. Lateral moments were provided by a rudder and by aconventional spoiler which could be deflected over the full semispan or, in some tests,only ahead of the outboard segment of the flaps.Blowing systems illustrated in fi
6、gure 2(d) provided boundary-layer control (BLC),when desired, for the wing leading edge, aileron (outboard trailing-edge flap segment),horizontal-tail leading edge, elevator, and rudder. In each of these systems, compressedair flowed from tubes through a row of small, closely spaced holes, then thro
7、ugh slots toform a fairly uniform sheet along the forward surface of the airfoil or control element.The engines used were 15.3-cm-diameter (6-in.) fans driven by compressed air andwere installed at -3o incidence so that the exhaust impinged directly on the flaps. Theengines were equipped with latera
8、l exhaust deflectors for use in trimming the lateralasymmetries in engine-out tests. Figure 2(e) shows a deflector installed on an engine.All tests were made in the 9- by 18-m (30- by 60-ft) open-throat test section of theLangley full-scale tunnel. The static-force tests were made with an internal s
9、train-gagebalance and conventional sting which entered the rear of the fuselage. Photographs of themodel in force-test and flight-test conditions are presented as figures 3(a) and 3(b),respectively.TESTS AND PROCEDURESStatic-Force TestsIn preparation for the tests, engine calibrations were made to d
10、etermine grossthrust as a function of engine rotational speed in the static condition - with the modelflaps off and the engine thrust deflectors off. The tests were then made by setting theengine speed to give the desired gross thrust and holding these settings constant throughthe ranges of angle of
11、 attack or sideslip. It has been shown in the past that the grossthrust of these engines at a constant speed is not affected significantly by forward speedfor the forward speeds involved in the present tests.7Provided by IHSNot for ResaleNo reproduction or networking permitted without license from I
12、HS-,-,-Jet deflection angles and flap turning efficiency were determined from measure-ments of normal and axial forces made in the static-thrust condition with flaps deflected.The static thrust used in computing turning efficiency was taken directly from the enginecalibrations at the appropriate rot
13、ational speed.During the tests, six-component longitudinal and lateral force-test data were meas-ured at several flap deflections (symmetric and asymmetric) through an angle-of-attackrange of from about -50 to 350 at engine gross-thrust coefficients up to 1.1 per enginefor four-engine and three-engi
14、ne operation. Tests were made at various incidences ofthe horizontal tail, at various deflections of spoiler, rudder, ailerons, and thrust deflec-tors, and for various amounts of BLC blowing over aileron, rudder, and wing leadingedge. The jet momentum for each of the blown surfaces was evaluated by
15、measuring theforce produced by the respective jets in the wind-off condition. Tests to determine side-slip aerodynamic stability derivatives were made at sideslip angles of -50 and 50. Wind-on tests were made at free-stream dynamic pressures of 62.2 and 81.4 N/m2 (1.3 and1.7 lb/ft2), which correspon
16、d to velocities of 10.1 and 11.6 m/sec (33 and 38 ft/sec), andReynolds numbers of 0.31 x 106 and 0.36 x 106, respectively. These values of Reynoldsnumbers were approximately in the same range as those of the flight tests which variedfrom 0.24 x 106 to 0.56 x 106.Free- Flight TestsIn the test setup f
17、or the free-flight tests (shown in fig. 4), the model was flownwithout restraint in the 9- by 18-m (30- by 60-ft) open-throat test section of the tunneland was remotely controlled about all three axes by two human pilots. One pilot, locatedin an enclosure at the rear of the test section, controlled
18、the model about its roll and yawaxes while the second pilot, stationed at one side of the test section, controlled the modelin pitch. The model-thrust operator was stationed with the pitch pilot. Compressed air,electric power, and control signals were supplied to the model through a flexible trailin
19、gcable composed of electric wires and lightweight plastic tubes. This cable also incor-porated a 0.32-cm (1/8-in.) steel cable (attached to the model) that passed through apulley above the test section and was used to catch the model in the event of an uncon-trollable motion or mechanical failure. T
20、he entire flight cable was kept slack during theflights by a safety-cable operator using a high-speed pneumatic winch. Further discussionof the free-flight technique, including the reasons for dividing the piloting tasks, is givenin reference 8.The control actuators were energized remotely by means
21、of control sticks used bythe pilots. Flicker-type (full-on or full-off) control was used in flying the model, and thetrimming of the control surfaces was accomplished by small electric motors which wereoperated independently of the flicker system. The ailerons moved only downward from8Provided by IH
22、SNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-their neutral position, and during flight tests were linked with the spoilers in such amanner that the deflection of a spoiler on the right wing, for instance, was always accom-panied by downward deflection of the le
23、ft aileron. In the engine-out condition, blowingwas applied to the aileron on the engine-out wing to provide an increment of roll trim. Noaileron blowing was used during four-engine operation. The rudder could be deflectedsimultaneously with the ailerons and spoilers, or left undeflected, at the opt
24、ion of thelateral pilot, and, like the ailerons, was provided with boundary-layer control only duringengine-out flights. Artificial damping was applied, when desired, by deflecting the appro-priate control surfaces (horizontal tail, spoiler, or rudder) by means of pneumatic servoswhose output was co
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASATND74111974FREEFLIGHTINVESTIGATIONOFTHESTABILITYANDCONTROLCHARACTERISTICSOFASTOLMODELWITHANEXTERNALLYBLOWNJETFLAP

链接地址:http://www.mydoc123.com/p-836909.html