NASA-TN-D-2595-1965 Experimental local heat-transfer data for precooled hydrogen and helium at surface temperatures up to 5300 deg r《当表面温度为5 300 ℃时 预冷氢气和氦气的实验性局部热传递数据》.pdf
《NASA-TN-D-2595-1965 Experimental local heat-transfer data for precooled hydrogen and helium at surface temperatures up to 5300 deg r《当表面温度为5 300 ℃时 预冷氢气和氦气的实验性局部热传递数据》.pdf》由会员分享,可在线阅读,更多相关《NASA-TN-D-2595-1965 Experimental local heat-transfer data for precooled hydrogen and helium at surface temperatures up to 5300 deg r《当表面温度为5 300 ℃时 预冷氢气和氦气的实验性局部热传递数据》.pdf(22页珍藏版)》请在麦多课文档分享上搜索。
1、4 NASA TN 0-2595 GPO PRICE $ OTS PRICE(S) $ Am EXPERIMENTAL LOCAL HEAT-TRANSFER DATA FOR PRECOOLED HYDROGEN i AND HELIUM AT SURFACE I TEMPERATURES UP TO 5300 R by Maynard F. Tuylor Lewis Research Center Cleuehnd Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 0 WASHINGTON, D. C. 0 JANUARY 1965 Pr
2、ovided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-EXPERIMENTAL LOCAL HEAT-TRANSFER DATA FOR PRECOOLED HYDROGEN AND HELIUM AT SURFACE TEMPERATURES UP TO 5300 R By Maynard F. Taylor Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMIN
3、ISTRATION For sole by the Office of Technical Services, Deportment of Commerce, Woshington, D.C. 20230 - Price $1.00 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-EXPERIMENTAL LOCAL HEAT-TRANSFER DATA FOR PRECOOLED HYDROGEN AM) HELIUM AT SURFACE TE
4、MPERATURES UP TO 5300 R by Maynard I?. Taylor Lewis Research Center SUMMARY Local values of heat-transfer coefficients and average friction coeffi- cients were measured experimentally for precooled hydrogen and helium gases flowing through an electrically heated tungsten tube with a length-diameter
5、ratio of 77 for the following range of conditions: local surface temperatures up to 5300 R, inlet gas temperatures from 252 to 325O R, inlet pressures from 37 to 93 pounds per square inch absolute, local bulk Reynolds numbers from 5700 to 48,400, local ratios of surface to bulk gas temperature up to
6、 8, and local heat fluxes up to 2,370,000 Btu per hour per square foot. A comparison of several methods of correlating local heat-transfer coef- ficients was made for several types of wall temperature distributions, and one method was found to work exceedingly well in correlating hydrogen and helium
7、 data with surface to bulk gas temperature ratios up to 8. Average friction coefficients for both helium and hydrogen with the Kq in. ab s - 2 50 !50 to 1000 500 to 1500 40 40 to 100 110 to 850 37 to 93 3F DATA Heat - transfer fluid Air Helium and hydro- gen Helium and hydro - gen Helium Helium Heli
8、um and hydro - gen Helium and hydro - gen Helium and hydro - gen Types of heat - xansfer coef - ficient oeasured iverage Local Local Local and aver- age Local and aver - age Local lverage Local %Unpublished data from Herbert J. Newman of Los Alamos Scientific Lab- oratory . Reference 1 presents cons
9、iderable data showing the effect of surface to fluid temperature ratio on the heat-transfer coefficient for air. Other in- vestigations using helium and hydrogen and extending the range of surface to fluid temperature ratio (refs. 2 and 3) or the range of wall temperature (ref. 4) or both (refs. 5 a
10、nd 6) have been presented. The conditions for which data were obtained in references 1 to 6 and in the present investigation are presented in table I. Reference 3 used an Inconel test section and lowered the inlet gas temperature with a liquid nitrogen ba.th. Inconel limited the wall to fluid bulk t
11、emperature ratio to 4.5 in reference 3, while the room temperature inlet gas and the melting point of the tungsten test section limited the wall to bulk temperature ratio to 5.6 in reference 6. In the present investigation, a tungsten test section was used to obtain high wall temperatures, while the
12、 inlet gas temperature was lowered with liquid nitrogen to obtain surface to bulk fluid temperature ratios as high as 8. mental heat-transfer data from the present investigation are presented along The melting point of The experi- 2 Provided by IHSNot for ResaleNo reproduction or networking permitte
13、d without license from IHS-,-,-with a recommended method for correlation. ExPERlMENTAL APPARATUS The test apparatus, test section, and instrumentation were the same as that described in reference 6 except that a liquid-nitrogen precooler was added to the inlet gas line as shown in figure 1. galion s
14、tainless-steel tanlr in which a nine-turn coil of copper tubing was im- mersed in liquid nitrogen. The liquid level was held constant with a float switch. The tank was insulated with plastic foam. The precooler consisted of a 30- The test section was fabricated and instrumented in the same manner as
15、 the The tungsten test section used in this experiment had one used in reference 6. Section A-A Liquid-nitrogen cooler CD-7889 Figure 1. - Schematic diagram of arrangement of test apparatus. an inside diameter of 0.115 inch, a heat-transfer length of 9 inches, and an entrance length of 14 diameters.
16、 copper- c ons t ant an thermocouples with a liquid- nitrogen cold junction. The inlet gas temperature was measured with METHOD OF CALCULATION The chemically frozen (chemical reaction term not included) transport and thermodynamic properties of hydrogen and helium used in the calculations of the hea
17、t-transfer and friction coefficients in this investigation were precisely the same as those used in reference 6, as were the physical properties of tung- sten and molybdenum. The average friction and local heat-transfer coefficients were calculated by the method used in reference 6. Local heat-trans
18、fer coefficients were ap- 3 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. proximated by dividing the test-section length into 10 equal increments and evaluating average coefficients for those small increments. Coefficients for the first and last
19、increment were not used because of the large end losses. RESULTS AND DISCUSSION Axial Wall Temperature Distributions Four axial outside wall temperature distributions, two for uncooled inlet gas and two for precooled inlet gas, are shown in figure 2 as a function of distance from the test-section en
20、trance. Temperature measurements, including thermocouple and optical pyrometer readings for each run, are also shown. Ex- perimental data including local h, %, and Tw for runs 1 to 23 (uncooled runs) are listed in table I1 of reference 6, while Run Gas flow, Entrance Total heat ?.-I W, temperature,
21、transferred, lblhr T11 QIS, c OR BtuI(hr)(sq ft) Figure 2. -Comparison of wall temperature distributions for cooled and un- cooled inlet hydrogen based on flw rate and maximum wall temperature. runs 32 to 52 (precooled runs) are summarized in table I1 of this report. (All symbols are defined in the
22、appendix.) Fig- ure 2 contains a compari- son of run 17 with run 51 and run 18 with run 52. The runs compared have the same flow rate and maximum wall temperature. It can be seen from figure 2 that there is an increase in the surface temperature near the entrance of the tube for the runs with cooled
23、 inlet gas over that of the runs where the in- let gas is not cooled. The increase is a result of two factors. First, the ratio of surface to bulk fluid temperature is increased by lowering the fluid temperature. This is accompanied by a de- crease in the heat-transfer coefficient, which tends to in
24、crease the surface temperature further. Second, the effect of in- creasing the ratio of sur- face to bulk fluid tem- perature is magnified by the increased electrical resistivity of tungsten at higher temperatures. The large axial temperature 4 Provided by IHSNot for ResaleNo reproduction or network
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASATND25951965EXPERIMENTALLOCALHEATTRANSFERDATAFORPRECOOLEDHYDROGENANDHELIUMATSURFACETEMPERATURESUPTO5300DEGR

链接地址:http://www.mydoc123.com/p-836799.html