NASA NACA-TR-970-1950 Theoretical lift and damping in roll at supersonic speeds of thin sweptback tapered wings with streamwise tips subsonic leading edges and supersonic trailing .pdf
《NASA NACA-TR-970-1950 Theoretical lift and damping in roll at supersonic speeds of thin sweptback tapered wings with streamwise tips subsonic leading edges and supersonic trailing .pdf》由会员分享,可在线阅读,更多相关《NASA NACA-TR-970-1950 Theoretical lift and damping in roll at supersonic speeds of thin sweptback tapered wings with streamwise tips subsonic leading edges and supersonic trailing .pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、REPC)RI 970THEORETICAL LIFT AND DJiMPING IN ROLL AT SUPERSONIC SPEEDS OF THIIN SWEPTBACKTAPERED WINGS WITH STREAIM.WWE TIPS, SUBSONIC LEADIING EDGES,KND SUPERSONIC TRAILING EDGES -By FEASK S. MALVESTUTO, Jr.,KENNETH MABGOLIS, andEEEWIEETS. RIBSERSUMMARYQn the basis of linearized supersonic-jiow theo
2、ry, generalizedeguations were derirecl and calculations made for the lijl anddamping in roll of a limited series of thin sweptback taperedwings. Results are applicable to wings m“ih streamwnketipsand for a range of supersonic speeds for which the uzt vO), A., and u:c.=pV2SbThe evaluation of equation
3、 (15) is simpltied by empIoying the integration procedure used forthe rolling-moment coefficient of each of the elemental triangukr areas (see fig. 5) is given bydCl,C= dCm-lCza. The contribution to(16)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-
4、THEORETICJSL LIFT AX() DAMPING IX ROLL OFwhere WOis the latera.Idistance of the center of pressure ofan elemental triangIe from the X-axis of the wing and dCLCis t-he lift coefficient of an elemental t.rimgnIar area. Theanalysis of reference 3 shows that for a pressure distributionof the form z(r),
5、which is the form of the pressure of equa-tion (14), the lift of a.nincremental triangle can be expressedas(17)where xl is the height and AS,= t-hearea of an eIemental tri-angle. The quantities xl and yOgiven in termsof v and otherparameters may be expressed a.sfollows (see Q. 5):3 c, eOvO=ZInvRegio
6、n OGEb(lm)l=2eo(l + mv)I(18)3b(l+m) vyo=8 l+mv JUse of equations (16), (17), and (18) leads to the followingintegral expression for Cl,=:b3(l + m)I(m)p 1sPdv1617 (I+na)b-zeo+ (1+ mvy.J=yFn (1-hn)b-i-27nOOCr(19)SWEPTBACK WINGS AT SUPERSONIC SPEEDS 401Region of wing within wing-tip Mach cones.For ther
7、egion of t-he wing within the wing-tip Mac-h cones, therolling-moment c.oeftlcient is ealuated by employing theapproxin.mte surface velocity potential given in equation (6);that is,The veIocity potential given by equation (6) can be expressedso as to apply to the rolling wing by considering the IOCS
8、I “elope of the airfoil surface with respect to the flow direction.For the thin wings of zero camber considered herein, theslope at any lateral station y is the Iota.1angle of attack ofthe wing and is equal to p/V. Substituting pq/V for a inequation (6 gives the approximate linearized surface veloc-
9、ity potent,iaIfor the rolbg wing; that is,The evaluation of equation (20) carried out inyields(20)append(l+m)b3Y. Tr3(l+m)f(j, expressed in oblique coordinates. (See fig. ofappend- Approximate solufion1.2Lo.8 $u9.Bu .6.4 -,Exacf Soluflh for tip regim.2(2) 10 .2 .4.6 p=”?-:!.8 Loz -1-. -_Y_w!(a) Sect
10、ion A-?J y= Crmatimt.) Seotfon S-S; z= Constant.FIGURE7.-C!hordwfss and sprmwfse pressure dfstributiom- forlfft in eectional planes throughthe wing-tip region.on crossing the Mach line emanating from the break.In particular, when a portion of the edge is para.Jlelto thestream direction (as is the ca
11、se for the streamtise wing tip)Czu;(vm) .“the due of dl,w IS unity. Hence, the term containing_du:(vnr)dow is zero and the lift is found to drop to a smallmagnitude on crossirg the tip Mach line in the wirg-tipregion.Provided by IHSNot for ResaleNo reproduction or networking permitted without licens
12、e from IHS-,-,-404 REPORT 970NATIOIWIJ ADVISORY COMMITTEE FOR AERONAUTICSFigure 8 shows the chordwise and spmnvise pressure dis-tributions for rolling. A similar situation of large fhitedrop in pressure across the wing-tip Mach line exists forrolling ardogous to the lifting case. (See reference 8.)T
13、he interesting result obtained is that the rolling pressure isnegative in the wing-tip region. This behavior is due to thefact that the sign of the pressure in the wing-tip region isaffected only by the angIe of attack of the leading edge ofthe plan form on the opposite side of the rolI axis which f
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASANACATR9701950THEORETICALLIFTANDDAMPINGINROLLATSUPERSONICSPEEDSOFTHINSWEPTBACKTAPEREDWINGSWITHSTREAMWISETIPSSUBSONICLEADINGEDGESANDSUPERSONICTRAILINGPDF

链接地址:http://www.mydoc123.com/p-836540.html