NASA NACA-TR-1048-1951 A study of effects of viscosity on flow over slender inclined bodies of revolution《粘度对溢出的细长倾斜回转体影响的研究》.pdf
《NASA NACA-TR-1048-1951 A study of effects of viscosity on flow over slender inclined bodies of revolution《粘度对溢出的细长倾斜回转体影响的研究》.pdf》由会员分享,可在线阅读,更多相关《NASA NACA-TR-1048-1951 A study of effects of viscosity on flow over slender inclined bodies of revolution《粘度对溢出的细长倾斜回转体影响的研究》.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、3 1176 00508 95mAERONAUTICSRF_ORT 1048:- :r BODIESProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-%*g r REPORT 1048A STUDY OF EFFECTS OF VISCOSITY ON FLOWOVER SLENDER INCLINED BODIESOF REVOLUTIONBy H. JULIAN ALLEN and EDWARD W. PERKINSAmes Aeronautic
2、al LaboratoryMoffett Field, Calif.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-National Advisory Committee for AeronauticsHeadquarters, 1724 F Street NW., Washington 25, D. C.Created by act of Congress approved March 3, 1915, for the supervision a
3、nd direction of the scientific studyof the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by actapproved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President,and serve as such without compensation.JEROME C.
4、 HUNSAKER, SC. D., Massachusetts Institute of Technology, ChairmanALEXANDER WETMORE, So. D., Secretary, Smithsonian Institution, Vic ChairmanDETLEV W. BRONK, PH.D., President, Johns Hopkins Univer-sity.JOHN H. CAss_oY, Vice Admiral, United States Navy, DeputyChief of Naval Operations.EDWARD U. CONDO
5、N, Pm D., Director, National Bureau ofStandards.HoN. THOMAS W. S. DAVIS, Assistant Secretary of Commerce.JAMES H. DOOL1TTLE, SC. D., Vice President, Shell Oil Co.R. M. HAZEN, B. S., Director of Engineering, Allison Division,General Motors Corp.WILLIAM LITTLEWOOO, M. E., Vice President, Engineering,A
6、merican Airlines, Inc.THEOnORE C. LONNQUEST, Rear Admiral, United States Navy,Deputy and Assistant Chief of the Bureau of Aeronautics.HON. DONALD W. NYROP, Chairman, Civil Aeronautics Board.DONALD L. PUTT, Major General, United States Air ForceActing Deputy Chief of Staff (Development).ARTHUR E. RAY
7、MOND. SC. D., Vice President, Engineering,Douglas Aircraft Co., Inc.FRANCIS W. RECHELDERFER, SC. D., Chief, United StatesWeather Bureau.GoRaor P. SAVILLE, Major General, United States Air Force,Deputy Chief of Staff (Development).HON. WALTER G. WmTMA_, Chairman, Research and Develop-ment Board, Depa
8、rtment of Defense.THEODORE P. WalCnT, So. I), Vice President for Research,Cornell Univers;ty.HuGs L. DRYDEN, Pm D., DirectorJOHN W. CROWLEY, JR., B. S., Associate Director for ResearchJOHN F. VICTORY, LL.D., Executive SecretaryE. H. CHAMBERLIN, Executive O_cerHENRY J. E. REID, D. Eng., Director, Lan
9、gley Aeronautical Laboratory, Langley Field, Vs.SMITH J. DEFHANCE, B. S., Director Ames Aeronautical Laboratory, Moffett Field, Calif.EDWARt) R. SHARP, SC. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, OhioTECHNICAL COMMITTEESAERODYNAMICS OPERATING PROBLEMSPOWER PLA
10、NTS FOR _kIRCRAFT INDUSTRY CONSULTINGAIRCRAFT CONSTRUCTIONCoordination of Research Needs of Military and Civil AviationPreparation of Research ProgramsAllocation of ProblemsPrevention of DuplicationConsideration of InventionsLANGLEY AERONAUTICAL LABORATORY, AMES AERONAUTICAL LABORATORY, LEWIS FLIGHT
11、 PROPULSION LABORATORY,Langley Field, Vs. Moffett Field. Calif. Cleveland Airport, Cleveland, OhioConduct, under _tnified control, for all agencies, of scientific research on the fundamental problems of flightOFFICE OF AERONAUTICAL INTELLIGENCE,Washington, D. C.Collection, classification, compilatio
12、n, and dissemination of scientific and technical information on aeronauticsProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-REPORT 1048A STUDY OF EFFECTS OF VISCOSITY ON FLOW OVERSLENDER INCLINED BODIES OF REVOLUTIONI33“ . JULIAN ALLEN AND EDWARD _V.
13、PERKINSSUMMARYThe ob,_er_ed flow field about slender inclined bodies ofrevolution is eot_ff_ared with tee calculated characteristics basedupon potential theory. The comparison is instructive inindicatil_g the mo_,ner it_ wb_ct_ the effects of viscosity areBased on this and other studies, a method is
14、 developed toallow.for viscous effects on the.force and moment ckaracteristicsof bodies. The calculated .force and moment characteristics oJtwo bodies oj high .fineness ratio are shown to be in good agree-ment, .for most engineering purposes, with experiment.INTRODUCTIONThe problem of the longitudin
15、al distribution of cross forceon inclined bodies of revolution in inviscid, incompressibleflow, which was primarily of interest to airship designers inthe past, was treated simply and effectively by Max Munk(reference 1). Munk showed that the cross force per unitlength on any body of revolution havi
16、ng high fineness ratiocan be obtained by considering the flow in planes perpendicu-lar to the axis of revolution to be approximately two-dimen-sional. By treating the problem inshowed thatdS.f = qo _- sin 2 awhere.fqodS/dxthis manner, Munk(1)cross force per unit lengthstream dynamic pressurerate of
17、change in body cross-sectional area withlongitudinal distance along the bodyangle of inclinationTsien (reference 2) investigated the cross force on slender bodies of revolution at moderate supersonic speeds-a prob-lem of more interest at the present to missile and supersonicaircraft designers-and sh
18、owed that, to the order of thefirst power of the angle of inclination, the reduced Munkformulao dS.f=“ q -d-i _ (2)was still applicable. This is not surprising when it is realizedthat the cross component of the flow field corresponds to across velocityV,0= V0 sin ai Supersedes NACA TN 2044, “Pressur
19、e Distribution and Some Effects of Viscosity onSlender Inclined Bodies of Revolution“ by H. Julian Allen, 1950.where 1o is the steam velocity. Thus tile cross componentof velocity, and hence, the cross .Maeh number will, forsmall angles of inclination, have a small subsonic value sothat the cross fl
20、ow will be essentially incompressible incharacter.Using equation (1) for the cross-force distribution, then,the total forces and moments experienced by a body in aninviscid fluid stream can be calculated. Comparison of thecalculated and experimental charaeteristies of bodies hasshown that the lift e
21、xperienced exceeds the ealeulated liftin absolute value by an amount which is greater the greaterthe angle of attack; the center of pressure is farther aft thanthe calculations indicate, the discrepancy increasing withangle of attack; while the absolute magnitude of the momentabout the center of vol
22、ume is less than that calculated. Ithas long been known that these observed discrepancies aredue pTimarily to the failure to eonsider the effects of viscosityin the flow.Experience has demonstrated, notably in the developmentof airfoils, that the behavior of the boundary layer on abody is intimately
23、 associated with the nature of the pressuredistribution that would exist on the body in inviscid flow.In particular, bounda_-layer separation is associated withthe gradient, of pressure recovery on a body. The severityof the effect of sueh separation can be correlated, in part,with the magnitude of
24、the total required pressure recover5-indicated by inviseid theor3,. It is therefore t.o be expectedthat it will be of value to compare the actual pressure dis-tribution on inclined bodies of revolution with that calculatedon the assumption that the fluid is inviseid. For the purposeof this study, a
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASANACATR10481951ASTUDYOFEFFECTSOFVISCOSITYONFLOWOVERSLENDERINCLINEDBODIESOFREVOLUTION 粘度 溢出 细长 倾斜 回转

链接地址:http://www.mydoc123.com/p-836428.html