NASA NACA-TN-925-1944 A least-squares procedure for the solution of the lifting-line integral equation《升力线积分方程解法的最小平方法》.pdf
《NASA NACA-TN-925-1944 A least-squares procedure for the solution of the lifting-line integral equation《升力线积分方程解法的最小平方法》.pdf》由会员分享,可在线阅读,更多相关《NASA NACA-TN-925-1944 A least-squares procedure for the solution of the lifting-line integral equation《升力线积分方程解法的最小平方法》.pdf(42页珍藏版)》请在麦多课文档分享上搜索。
1、R - -b- ti- ? =- - .- . _ - .E_ * - _.-8 *-L- -. - - . .a71 a71. TECHNICAL NOTESs NATIONAL ADVISORY COMMITTEE FOR AERONAUT ICS-b.No. 925: / “- “”- -.I. - . . . . .- .- . . .A LEASTSQUARES PROCqURE FOR THE SOLUT IOI?OFTHE LIFl!IHG-L IHE IbT7!EGRALEQUAT IONBy Francis B. Hildebrandliassachusetts Instit
2、pte of TechnologyJCLASSIFIEDMCUMENTThisdocumentcontainaelaanifiedinformationaffectingtheNationalBefenmeoftheUnitedStatenwithinthemeaning. ofthe EspionageAct,USC50:31and32. Itstranmis6ionortherevelationof itsoontentaA in anymannertoan unauthorized*. .*rsonisprohibitedbylaw.Infor-.mationsoclassifiedma
3、ybeimrt-i? edonlyto personsinthemiliteryand navalServicesoftheu-nitd* States,appropriatecivilianoffi-cersandemployeesof theFederalGovernmentwhohavea legitimateinteresttherein,md to UnitedStatescitizensof knownIqaltiyand discretionwho of neceseitymustbeinformed thereof.-. “.WashingtonFebruary 1?344.
4、.-. -,.,- - .-.-_- ._ .- -.-. - .-r-.- .-.-.- r. .-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-m.8 .“:l!llllmminllllll“-:”y:;y:;:.:”-,:,:,:,31 i760fi4338223 -: .- ,- ._- :-. ._.r.- . -.- .-.NATIONAL ABV ISORY COMM.?TTEE,FOR .J?3ROMAUTICS .-.-.-.
5、-,.?.-A LEAS TSQUARXS PROCEDURE “FOR TEE SOLU!3?01703TH23 LIF!IIN(+L IiW INTEGRLiL EQTJATION -.By Francis BIIildebrand - .-SIJMMfi”lshould be of a form readily adaptableto the approxmation of the function T, the characteristic behavior of which usually is known.In the present procedure an approximat
6、ion to Y(y)is assumed in the form. . Wlth the exception of the3+ fi ) An Yan (+7)nfirst term, the approxi-mating functions ae conventional ones employed isewhere. The cooffici.ent of 33, which is of the formrequired by equation (16), was originally chosen for usein cases when a(y) has a discontinuou
7、s first derivativeat tho root (e.g, in the case of a symmetrically linearangle of attack), since the contribution of this term tothe integral representing the induced angle of attack,has a discontinuous derivative at the root (Y= O), whilothe function itself has a continuous derivative at thispoint
8、, The function was, however, retained for use inthe more general case since itaproximating functions, being$!w th functions 1-y2figure l.)With the approximation ofline equation (5) becomescomplements the otherintermediate in behaviorand yadlya . (See aequation (17) the liftin*?.?.rProvided by IHSNot
9、 for ResaleNo reproduction or networking permitted without license from IHS-,-,-,. NACA Technical Note No”. .925 11+!320(+)+= ”+aa+A4”4+A”- - -,. . .,. . . . . . .-.s.(+(y ) Yj .T ” .TT -1 “ay” .Yn ,.- . . .,. .is .pi.ecewise constant in .theint,erval.Y.- .- .,. “1!lr(y)dy= -,y (48)b ;-,-.i “. -“- .
10、l+. r;+. , . .”=. - ,-. -. -5.sneeded. . _, ,.-,., ;, . ,t,.?q.-.:,-. .-.-,- - . -:-.:-1-2,.:;As an exam”ple, stippose.that the iiileron deflectionof a wtng is such thatrO -l+1and” it follows from equation (20) that . _ . .-AIIangle Of attack o“f-1-rad,ian-fro-m O “to-.489”ahd0 from0.489, to. 1 .s-
11、precried, sb ,hat, in th6 notat”io of”the. .examplo of the p.reced.”ingsectibu . , I _ _ .,. . ,. a = 0.489 (55) -!I!hoequation to be solved is thenTo(y) + 1 . df = cL*(y)C*(Y) =“ -1 dq yq(56)Wherea71Fe(y) = P(y) l?(y) (57).and P(y) and a*(y)(52),are defined in equations (50) andT“: -.,:Provided by
12、IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-26 NAOA Technical Note No. 925The func.%ions C*(Y)? P(y) and a*(y) are tabulated.at the nine points considered in table 3,If the operations indicated in equation (19) (whero a is replaced by a*) are carried out, eq
13、uation (21)takes the form “B A. AZ Ad A-.1919b 1,19190 -,09596 -,02399 -.01199-,07040 1,25021 -.07042 -,02800 -.01323.10621 1.29847 .00920 .03391 -,01759.31748 1,33285 .14545 -.02293 -.02469.54852 1,34659 .33665 -.03619 -, oaQQ4.77976 1.32734 .57247 .18323 ,03444,97608 1s25020 .82318 .45254 .223161.
14、05476 1.05256 1.00377 ,82257 ,644961.02073 .80166 1.08951 1.25742 1,389351.852691.947841.940881.766571.09D23.49026.0527-.S?629-.32527.(58;The coefficients of the final set of linear aquations,obtained by taking the dot product of the auxillary matrixdefined in equation (25) into both sides of equati
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASANACATN9251944ALEASTSQUARESPROCEDUREFORTHESOLUTIONOFTHELIFTINGLINEINTEGRALEQUATION 升力 积分 方程 解法 最小

链接地址:http://www.mydoc123.com/p-836418.html