NASA NACA-RM-L7K07-1948 Flight characteristics at low speed of delta-wing models《三角形机翼模型低速时的飞行特性》.pdf
《NASA NACA-RM-L7K07-1948 Flight characteristics at low speed of delta-wing models《三角形机翼模型低速时的飞行特性》.pdf》由会员分享,可在线阅读,更多相关《NASA NACA-RM-L7K07-1948 Flight characteristics at low speed of delta-wing models《三角形机翼模型低速时的飞行特性》.pdf(36页珍藏版)》请在麦多课文档分享上搜索。
1、:A aspect ratio _b_Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RMNo. L7KO7 3A sweepback of leading edge, degreesk taper ratio _RTi_ chord_ootc ordkX radius of gyration of model about principal longitudinalaxis of inertia, feetky radius of gy
2、ration of model about principal lateral axisof inertia, feetkZ radius of gyration of model about principal normal axisof inertia, feetp rolling angular velocity, radians per secondp mass density of air, slug per cubic footangle of attack, degreesB angle of sideslip, degrees8e elevon deflection, degr
3、ees, subscripts r and Z denoteright and left elevon deflection, respectivelyT inclination of principal longitudinal axis of inertiarelative to longitudinal body axis, degrees, positivewhen forward end of principal axis is above longitudinalbody axisCL lift coefficient _-_-CD drag coefficient _-_-jCL
4、ater_ force)Cy lateral-force coefficient q$Cm pitching-moment coefficient _Pitching moment_. -)(Rolling moment_C _ rolling-moment coefficient _ _b “J(Yawing mome ntbCn yawing-moment coefficient qSb #Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 N
5、ACA RM No. LTK07CLmax maximum llft coefficient_CZa change of rolling-moment coefficient produced by elevonsas ailerons_Cna change of yawing-moment coefficient produced by elevonsas aileronsCv rate of change of lateral-force coefficient with angle ofIBsideslip in degrees _C rate of change of rolling-
6、moment coefficient with angle of“sideslip in degreesC_ rate of change of yawing-_oment coefficient with angle ofC rate of change of rolling-moment coefficient with rollingvelocity factor in radiansAPPARATUS AND TESTSThe present investigation consisted of tests in the Langley free-flight tunnel, whic
7、h ts described in reference 4, to determine thestability and control characteristics of each of the nine models shownin figures i to 9- The models were simple flying-_Ing models with avertical tall at the trailing edge of the wing but with no fuselage orhorizontal tail. The airfoil used on the wings
8、 was a flat_-platetype,a sketch of which is shown in figure 10. This airfoil was used becauseit was simple to build and because, at low scale, the aerodynamiccharacteristics of delta wings have been found to be virtually independ-ent of the airfoil section. This characteristic was indicated bycompar
9、ison of the delta-_ing data from reference 3 with some unpublishedGerman data on a similar series of delta wings with NACA 0012 profilesand with some unpublished data on a 60 sweptback delta wing with anNACA 0015-64 airfoil.The control surfaces were constant-chord plain flaps at thetrailing edge of
10、the wing. These surfaces were of the type generallyProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM No. LTK07 5called elevons; that is, the two surfaces were deflected up and downtogether to serve as elevators and were deflected differentially
11、 toserve as ailerons.The vertical tails used on the models varied in size but weregeometrically similar having an aspect ratio of 2, taper ratio of 0.5,and no sweep of the 0.5 chord llne. The vertical tail arrangementsused on each of the models are illustrated in figures 1 to 9. Thesearrangements co
12、nsisted of a single tail in the plane of symmetry onall of the models except model 2. This model was the first one testedand used a single tail in the plane of symmetry or two of these tailsat the wing tips which doubled the tail area. Model 2 was the onlyone equipped with a movable rudder.Inasmuch
13、as the present investigation was of an exploratory natureand there was no precedent to indicate what mass characteristics themodels should have, the models were simply ballasted to obtain eitherof the two center-of-gravity positions which were used during the tests.No attempt to adjust the weight or
14、 moments of inertia was made. Themass characteristics of the models, given in figures 1 to 9, weremeasured when the models were ballasted for the rearward of the twocenter-of-gravlty positions which were used during the tests. Thisrearward center-of-gravity position isshown on the figures.Photograph
15、s of two of the models flying in the test section ofthe Langley free-flight tunnel are shown as figur_ ll.Each of the models was flight-tested over as wide a range oflift coefficient as possible with two center-of-gravity positions andwith various vertical tail arrangements in order to determine qua
16、li-tatively the stability and control characteristics and the generalflight behavior. General flight behavior is the term used to describethe over-all flying characteristics of a model and indicates the easewith which the model can be flown, both for straight and level flightand for performance of t
17、he mild maneuvers possible in the Langleyfree-flight tunnel. Any abnormal characteristics of the model aregenerally Judged as unsatisfactory general flight behavior, inasmuchas they are disconcerting to the free-fllght-tunnel pilots._ Ineffect, then, the general flight behavior is much the same as t
18、hepilots opinion or “fee_ of an airplane and indicates whetherstability and controllability are properly proportioned.All the flight tests were made in power-off gliding flight.The range of llft coefficient which could be covered in fllghttestswas limited by the maximum speed of the tunnel which det
19、ermined theloweat possible lift coefficient. The highest lift coefficient wasProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-6 NACA RM No. L7K07determined by the stall, by maximnm glide angle of the tunnel, or bypoor flying characteristics. The two c
20、enter-of-gravity positionscorresponded to approximately 0.05 and O.10 static mar_in at moderatelift coefficients (CL_ 0.6).Force tests of each of the models were made to determine thestatic stability and control characteristics over the entire speedrange. All of the forces and moments were measured
21、with reference tothe stability axes which are shown in figure 12 and to the rearwardcente_-of-gravity positions which are shown in flg_ares 1 to 9. Thevalues of the stability derivatives CyB, C_, and Cn_ weredetermined from force tests made at angles of yaw of 5 and -5.All the force tests rwere made
22、 at a dynamic pressure of 3.0 pounds persquare foot which gave values of Reynolds number from 402,000to 1,156,000 based on the mean aerodynamic chords of the wings.Tests were made to determine the damplng-in-roll parameter CZpfor models h and 5 by the method described in reference 5_. Thevalues of C
23、Zp for the other models were available and were takenfrom reference 3.RESULTS AND DISCL_SIONInterpretation of ResultsThe results of the force tests of som_ of the wings tested havebeen compared with som_ unpublished data on a delta wing having60 sweepback which was tested in the Langley full-scale t
24、urn,el.The full-scale wing had a sharp leading edge which tended to producethe same. type of flow as that encountered at low scale. Good agree-ment was obtained between the llft, drag, and static stabilitycharacteristics of the low-scale models and the full-scale wing wltha sharp leading edge. The r
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASANACARML7K071948FLIGHTCHARACTERISTICSATLOWSPEEDOFDELTAWINGMODELS 三角形 机翼 模型 低速 飞行 特性 PDF

链接地址:http://www.mydoc123.com/p-836133.html