IESNA LM-62-2006 Laboratory or Field Thermal Measurements of Fluorescent Lamps and Ballasts in Luminaires.pdf
《IESNA LM-62-2006 Laboratory or Field Thermal Measurements of Fluorescent Lamps and Ballasts in Luminaires.pdf》由会员分享,可在线阅读,更多相关《IESNA LM-62-2006 Laboratory or Field Thermal Measurements of Fluorescent Lamps and Ballasts in Luminaires.pdf(18页珍藏版)》请在麦多课文档分享上搜索。
1、 IESNA LM-62-06 IESNA Guide for Laboratory or Field Thermal Measurements of Fluorescent Lamps and Ballasts in Luminaires Publication of this Committee Report has been approved by the IESNA. Suggestions for revisions should be directed to the IESNA. Prepared by: The Subcommittee on Photometry of Indo
2、or Luminaires of the IESNA Testing Procedures CommitteeIESNA LM-62-06 Copyright 2006 by the Illuminating Engineering Society of North America. Approved by the IESNA Board of Directors, May 29, 2006, as a Transaction of the Illuminating Engineering Society of North America. All rights reserved. No pa
3、rt of this publication may be reproduced in any form, in any electronic retrieval system or otherwise, without prior written permission of the IESNA. Published by the Illuminating Engineering Society of North America, 120 Wall Street, New York, New York 10005. IESNA Standards and Guides are develope
4、d through committee consensus and produced by the IESNA Office in New York. Careful attention is given to style and accuracy. If any errors are noted in this docu- ment, please forward them to Rita Harrold, Director Educational and Technical Development, at the above address for verification and cor
5、rection. The IESNA welcomes and urges feedback and comments. ISBN # 0-87995-214-8 978-0-87995-21403 Printed in the United States of America. DISCLAIMER IESNA publications are developed through the consensus standards development process approved by the American National Standards Institute. This pro
6、cess brings together volunteers representing varied viewpoints and interests to achieve consensus on lighting recommendations. While the IESNA administers the process and establishes policies and procedures to promote fairness in the develop- ment of consensus, it makes no guaranty or warranty as to
7、 the accuracy or completeness of any information published herein. The IESNA disclaims liability for any injury to persons or property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, o
8、r reliance on this document In issuing and making this document available, the IESNA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the IESNA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this
9、document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. The IESNA has no power, nor does it undertake, to police or enforce compliance with the contents of t
10、his document. Nor does the IESNA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or statement of compliance with the requirements of this document shall not be attributable to the IESNA and is solely the responsibility of the ce
11、rtifier or maker of the statement.IESNA LM-62-06 LM-62-06, IESNA Guide for Laboratory or Field Thermal Measurements of Fluorescent Lamps and Ballasts in Luminaires Subcommittee on Photometry of Indoor Luminaires Robert C Berger, Chair William E. Beakes Randall P. Bergin Randall Blanchette LC Michael
12、 A. Kalkas Becky Kuebler* Kelly C. Lerbs* Robert E. Levin* Ian Lewin FIES* David N. Randolph LC David Rector Donald C. Smith Nick Stuffer* Lane Swainston* John X. Zhang * Advisory * Honorary IESNA Testing Procedures Committee Michael Grather, Chair Carl K. Andersen John B. Arens Lawrence M. Ayers Wi
13、lliam E. Beakes Robert C. Berger Randall P. Bergin Rolf S. Bergman Randall Blanchette James R. Cyre Russell C. Dahl* Ronald O. Daubach Kevin J. Dowling* David Ellis David B. Goodwin* Richard V. Heinisch* Robert E. Horan Donald E. Husby* Michael A. Kalkas* Demetrios Karambelas* Mihaly Kotrebai John L
14、awton* Lorence E. Leetzow* Kelly C. Lerbs* Robert E. Levin* Ian Lewin Robert Low* Joseph P. Marella Greg McKee Samuel W. McKnight* Douglas C. Mertz* C. Cameron Miller Bruce Mosher* Waneta A. Newland Yoshihiro Ohno* Carla Ooyen David W. Parkansky* Eli M. Puszkar* David N. Randolph David Rector Donald
15、 C. Smith* Robert C. Speck* Lloyd Stafford* Gary A. Steinberg Nick Stuffer* Theodor G. Yahraus* John X. Zhang * Advisory * Honorary IESNA Guide For Laboratory or Field Thermal Measurements of Fluorescent Lamps and Ballasts in Luminaires FOREWORD This Guide, which is a revision of the 1991 guide of t
16、he same name, 1 is for luminaire designers and man- ufacturers to use in improving equipment perfor- mance. It is intended as an aid to the designer when measuring operating temperature of lamps and bal- lasts in luminaires under either laboratory or field con- ditions. 1.0 INTRODUCTION 1.1 Scope Th
17、is Guide covers only thermal measurement of fluorescent lamps and ballasts in luminaires. Its purpose is to aid luminaire designers to achieve optimum performance of these components in given applications. In addition to the general test procedures outlined in this Guide, lamp and ballast manufactur
18、ers data sheets should always be con- sulted when possible. Manufacturers of these products often have technical information avail- able, detailing product specific thermal test point locations and limits (see references 2-4). 1.2 Need for Thermal Testing Fluorescent lamps are temperature sensitive
19、light sources. For most fluorescent light sources, their light output, power consumption, and efficacy are influenced by the temperature of the tube at its coolest point (cold or cool spot), which determines mercury vapor pressure. (See reference 5 and Annex A.) Temperatures greater than optimum wil
20、l cause lamp lumens and power consumption to decline nearly proportionately; however, at temper- atures cooler than optimum, light output may decline rapidly while power consumption remains high, causing a precipitous reduction of efficacy. The new high efficiency lamp/ballast systems cou- pled with
21、 heat sinking metal louvers and/or heat removal luminaires can have a surprisingly adverse effect unless temperature factors are carefully considered. Conversely, the critical temperature affecting ballast performance is the hottest part of the ballast. For typical electromagnetic ballasts, this is
22、the tempera- ture of the transformer core and coil. It is generally measured on that part of the ballast case closest to the coil. The location of the hot spot can be obtained from the ballast manufacturer or can be determined by carefully scanning the case with a temperature probe. The importance o
23、f ballast temperature rise is apparent from the industry recognized fact that a rise of 10 C (18 F) in coil temperature above 90 C (194 F) can reduce ballast coil life by 50 percent. Since 1968 all American domestic indoor high power factor fluorescent ballasts have been equipped with built in Class
24、 P thermal protectors (see references 6 and 7). These Class P protectors are designed to switch the ballast primary off when the maximum case temperature rises in excess of 100 C (212 F). The ballasts will restart the lamps in about 30 min- utes when the case cools to about 90 C (194 F). Electronic
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- IESNALM622006LABORATORYORFIELDTHERMALMEASUREMENTSOFFLUORESCENTLAMPSANDBALLASTSINLUMINAIRESPDF

链接地址:http://www.mydoc123.com/p-784717.html