ATIS 0900105 09-2013 Synchronous Optical Network (SONET) C Network Timing and Synchronization.pdf
《ATIS 0900105 09-2013 Synchronous Optical Network (SONET) C Network Timing and Synchronization.pdf》由会员分享,可在线阅读,更多相关《ATIS 0900105 09-2013 Synchronous Optical Network (SONET) C Network Timing and Synchronization.pdf(31页珍藏版)》请在麦多课文档分享上搜索。
1、 AMERICAN NATIONAL STANDARD FOR TELECOMMUNICATIONS ATIS-0900105.09.2013 SYNCHRONOUS OPTICAL NETWORK (SONET) NETWORK ELEMENT TIMING AND SYNCHRONIZATION As a leading technology and solutions development organization, ATIS brings together the top global ICT companies to advance the industrys most-press
2、ing business priorities. Through ATIS committees and forums, nearly 200 companies address cloud services, device solutions, emergency services, M2M communications, cyber security, ehealth, network evolution, quality of service, billing support, operations, and more. These priorities follow a fast-tr
3、ack development lifecycle from design and innovation through solutions that include standards, specifications, requirements, business use cases, software toolkits, and interoperability testing. ATIS is accredited by the American National Standards Institute (ANSI). ATIS is the North American Organiz
4、ational Partner for the 3rd Generation Partnership Project (3GPP), a founding Partner of oneM2M, a member and major U.S. contributor to the International Telecommunication Union (ITU) Radio and Telecommunications sectors, and a member of the Inter-American Telecommunication Commission (CITEL). For m
5、ore information, visit . AMERICAN NATIONAL STANDARD Approval of an American National Standard requires review by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI
6、 Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort b
7、e made towards their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conformin
8、g to the standards. The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the nam
9、e of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard. CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the America
10、n National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute. Notice of Disclaimer b)
11、 The initial fractional frequency offset magnitude shall be less than 0.05 ppm. Initial fractional frequency offset (in ppm) is defined here as: nkknkxnny001221006.0where: 0 is the sample period in seconds, n+1 is the number of phase samples in the measurement period, n0 = 60 seconds, xkare the phas
12、e samples in ns (xkis the sample 64 s after entry into holdover). Any frequency drift rate magnitude shall be less than 5.8 x 10-6 ppm/sec9. Frequency drift rate, D, is the time derivative of fractional frequency offset, defined here (in ppm/s) as: nkknknnkxnnnD02201161612306.0where: 0is the sample
13、period in seconds, n+1is the number of phase samples in the measurement period, n0 = 2000 seconds, 95.8 106ppm/s corresponds to a frequency drift of 0.5 ppm in a 24-hour period. ATIS-0900105.09.2013 7 xkare the phase samples in ns (xkis a sample taken at a time greater than or equal to 64 s after en
14、try into holdover). c) The fractional frequency offset at the output of the SONET NE, relative to the input at the moment of reference loss, shall not exceed a magnitude of 4.1 ppm due to temperature variations. This allowance is for temperature effects only, which do not normally occur rapidly. 6.3
15、 Holdover Recovery An upper bound on the rate of frequency change during recovery from holdover is necessary to avoid excessive amounts of jitter encoded onto SONET asynchronous payloads (DS1 and DS3). The rate of change of frequency, D, shall not exceed 2.9 ppm/s. D is defined as: nkknknnkxnnnD0220
16、1161612306.0where: 0is the sample period in seconds, n+1 is the number of phase samples in the measurement period, n0= 1.0 second, xkare the phase samples in ns (xkis a sample any time after recovery from holdover is initiated). 6.4 Pull-in Range In order to accommodate line timing from a SONET elem
17、ent with an SMC in holdover, a SONET NE with an SMC shall be able to lock to a timing reference signal which is 20 ppm offset from the nominal frequency. An SMC is not required to pull-in to a reference signal when its input reference is beyond the SMCs specified pull-in range. 6.5 Hold-in Range To
18、ensure that an OC-N timed SONET NE with an SMC will track and remain locked to a reference signal, the hold-in range of the SMC shall be at least 20 ppm relative to the nominal reference frequency. ATIS-0900105.09.2013 8 Figure 1 - SMC TDEV upper limit for DS1 synchronization reference signals ATIS-
19、0900105.09.2013 9 Figure 2 - MTIE upper limit for SMC entering holdover ATIS-0900105.09.2013 10 Annex A (informative) A DS1 Wander Accumulation through SONET Islands A.1 General The OC-N output wander specification in Figure 1 is tighter than the wander specification in ATIS-0900101 for OC-N signals
20、 used as synchronization references. It is expected that the wander specification in ATIS-0900101 will be reconsidered when ATIS-0900101 is reviewed. The tighter specification was driven by studies of wander accumulation on DS1 signals transported through SONET islands. A SONET island is a SONET net
21、work with asynchronous interfaces as shown in Figure A.1. As these SONET islands are interconnected, jitter and wander can accumulate as DS1 signals are mapped and de-mapped from SONET signals. Jitter accumulation studies are documented in ATIS-0900105.03. A wander budget was developed for DS1 signa
22、ls transported over SONET and is included in Annex H of ATIS-0900105.03. This wander budget allocated 10.1 microseconds of wander per day to SONET NE synchronization noise and random pointer adjustments. This budget was developed using ITU-T Recommendation G.822 for slip performance as a guideline.
23、At present, ITU-T Recommendation G.822 is the only known specification for slip performance. ITU-T Recommendation G.822 specifies in a national and local network that there should be less than an average of 2.3 slips in 24 hours (46% of 5 slips in 24 hours) at least 98.9% of the time. Existing netwo
24、rk elements may not be able to continually measure conformance to this specification. Simulations of DS1s transported over SONET islands showed that this specification could not be met over several islands with wander at the level specified in ATIS-0900101. The simulations showed the slip objective
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ATIS0900105092013SYNCHRONOUSOPTICALNETWORKSONETCNETWORKTIMINGANDSYNCHRONIZATIONPDF

链接地址:http://www.mydoc123.com/p-541410.html