ASTM E986-2004(2010) 1250 Standard Practice for Scanning Electron Microscope Beam Size Characterization《扫描电子显微镜射束尺寸特征描述标准实施规程》.pdf
《ASTM E986-2004(2010) 1250 Standard Practice for Scanning Electron Microscope Beam Size Characterization《扫描电子显微镜射束尺寸特征描述标准实施规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM E986-2004(2010) 1250 Standard Practice for Scanning Electron Microscope Beam Size Characterization《扫描电子显微镜射束尺寸特征描述标准实施规程》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E986 04 (Reapproved 2010)Standard Practice forScanning Electron Microscope Beam Size Characterization1This standard is issued under the fixed designation E986; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year o
2、f last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice provides a reproducible means by whichone aspect of the performance of a scanning electron micro-scope
3、 (SEM) may be characterized. The resolution of an SEMdepends on many factors, some of which are electron beamvoltage and current, lens aberrations, contrast in the specimen,and operator-instrument-material interaction. However, theresolution for any set of conditions is limited by the size of theele
4、ctron beam. This size can be quantified through the mea-surement of an effective apparent edge sharpness for a numberof materials, two of which are suggested. This practice requiresan SEM with the capability to perform line-scan traces, forexample, Y-deflection waveform generation, for the suggested
5、materials. The range of SEM magnification at which thispractice is of utility is from 1000 to 50 000 3 . Highermagnifications may be attempted, but difficulty in makingprecise measurements can be expected.1.2 This standard does not purport to address all of thesafety concerns, if any, associated wit
6、h its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E7 Terminology Relating to MetallographyE766 Practice for Calibrati
7、ng the Magnification of a Scan-ning Electron Microscope3. Terminology3.1 Definitions: For definitions of terms used in this prac-tice, see Terminology E7.3.2 Definitions of Terms Specific to This Standard:3.2.1 Y-deflection waveformthe trace on a CRT resultingfrom modulating the CRT with the output
8、of the electrondetector. Contrast in the electron signal is displayed as achange in Y (vertical) rather than brightness on the screen. Thisoperating method is often called Y-modulation.4. Significance and Use4.1 The traditional resolution test of the SEM requires, as afirst step, a photomicrograph o
9、f a fine particulate sample takenat a high magnification. The operator is required to measure adistance on the photomicrograph between two adjacent, butseparate edges. These edges are usually less than one millime-tre apart. Their image quality is often less than optimumlimited by the S/N ratio of a
10、 beam with such a small diameterand low current. Operator judgment is dependent on theindividual acuity of the person making the measurement andcan vary significantly.4.2 Use of this practice results in SEM electron beam sizecharacterization which is significantly more reproducible thanthe tradition
11、al resolution test using a fine particulate sample.5. Suggested Materials5.1 SEM resolution performance as measured using theprocedure specified in this practice will depend on the materialused; hence, only comparisons using the same material havemeaning. There are a number of criteria for a suitabl
12、e materialto be used in this practice. Through an evaluation of thesecriteria, two samples have been suggested. These samples arenonmagnetic; no surface preparation or coating is required;thus, the samples have long-term structural stability. Thesample-electron beam interaction should produce a shar
13、plyrising signal without inflections as the beam scans across theedge. Two such samples are:5.1.1 Carbon fibers, NISTSRM 2069B.35.1.2 Fracture edge of a thin silicon wafer, cleaved on a(111) plane.6. Procedure6.1 Inspect the specimen for cleanliness. If the specimenappears contaminated, a new sample
14、 is recommended as anycleaning may adversely affect the quality of the specimen edge.6.2 Ensure good electrical contact with the specimen byusing a conductive cement to hold the specimen on a SEM1This practice is under the jurisdiction of ASTM Committee E04 on Metallog-raphy and is the direct respon
15、sibility of Subcommittee E04.11 on X-Ray andElectron Metallography.Current edition approved April 1, 2010. Published May 2010. Originallyapproved in 1984. Last previous edition approved in 2004 as E986 04. DOI:10.1520/E0986-04R10.2For referenced ASTM standards, visit the ASTM website, www.astm.org,
16、orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from National Institute of Standards and Technology (NIST), 100Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http:
17、/www.nist.gov.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.stub, or by clamping the specimen on the stage of the SEM.Mount the specimen rigidly in the SEM to minimize any imagedegradation caused by vibration.6.3 Verify magnificati
18、on calibration for both X and Y direc-tions. This can be accomplished by using Practice E766.6.4 Use a clean vacuum of 1.33 by 102Pa (104mm Hg)or better to minimize specimen contamination resulting fromelectron beam and residual hydrocarbons interacting duringexamination. The presence of a contamina
19、tion layer has adeleterious effect on image-edge quality.6.5 Allow a minimum of 30 min for stabilization of elec-tronic components, vacuum stability, and thermal equilibriumfor the electron gun and lenses. The selection of optimum SEMparameters is at the discretion of the operator.4For measuringthe
20、ultimate resolution, these will typically be: high kV(30max.), short working distance (5 to 10 mm), smallest spotsize, and long scan time.6.6 Any alternative set of conditions can be used to measureprobe size, but they will measure beam diameter under thosespecific conditions, not ultimate resolutio
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME986200420101250STANDARDPRACTICEFORSCANNINGELECTRONMICROSCOPEBEAMSIZECHARACTERIZATION 扫描 电子显微镜 尺寸

链接地址:http://www.mydoc123.com/p-533909.html