ASME ANS RA-S-1 4-2013 Probabilistic Risk Assessment Standard for Advanced Non-LWR Nuclear Power Plants.pdf
《ASME ANS RA-S-1 4-2013 Probabilistic Risk Assessment Standard for Advanced Non-LWR Nuclear Power Plants.pdf》由会员分享,可在线阅读,更多相关《ASME ANS RA-S-1 4-2013 Probabilistic Risk Assessment Standard for Advanced Non-LWR Nuclear Power Plants.pdf(501页珍藏版)》请在麦多课文档分享上搜索。
1、 Probabilistic Risk Assessment Standard for Advanced Non-LWR Nuclear Power Plants TRIAL USE AND PILOT APPLICATIONPublication of this standard for trial use has been approved by The American Society of Mechanical Engineers and the American Nuclear Society. Distribution of this standard for trial use
2、and comment shall not continue beyond 60 months from the date of publication, unless this period is extended by action of the Joint Committee on Nuclear Risk Management. It is expected that following this 60-month period, this draft standard, revised as necessary, will be submitted to the American N
3、ational Standards Institute (ANSI) for approval as an American National Standard. A public review in accordance with established ANSI procedures is required at the end of the trial-use period and before a standard for trial use may be submitted to ANSI for approval as an American National Standard.
4、This trial-use standard is not an American National Standard.Comments and suggestions for revision should be submitted to:Secretary, Joint Committee on Nuclear Risk ManagementThe American Society of Mechanical EngineersTwo Park AvenueNew York, NY 10016-5990ASME/ANS RA-S-1.4-2013 Date of Issuance: De
5、cember 9, 2013 NOTE: The original trial use period of 36 months was extended to 60 months by the Joint Committee on Nuclear Risk Management. ASME is the registered trademark of The American Society of Mechanical Engineers. This code or standard was developed under procedures accredited as meeting th
6、e criteria for American National Standards. The standards committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment
7、 that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public at large. ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any
8、patent rights asserted in connection with any items mentioned in this document and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent nor assumes any such liability. Users of a code or standard are expressly advised that deter
9、mination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code o
10、r standard. ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals. No part of this document may be reproduced in any form, in an electronic ret
11、rieval system or otherwise, without the prior written permission of the publisher. The American Society of Mechanical Engineers Two Park Avenue, New York, NY 10016-5990 Copyright 2013 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved Published in U.S.A. i CONTENTS (A detailed conte
12、nts precedes each section.) Foreword ii Preparation of Technical Inquiries to the Joint Committee on Nuclear Risk Management . iv Contributors to the Probabilistic Risk Assessment Standard for Advanced Non-LWR Nuclear Power Plants . vi Section 1 Introduction 2 Section 2 Acronyms and Definitions . 16
13、 Section 3 Risk Assessment Application Process 43 Section 4 Risk Assessment Technical Requirements . 58 Section 5 PRA Configuration Control 471 Section 6 Peer Review 474 (All references are distributed within the above sections.) ii FOREWORD The American Society of Mechanical Engineers (ASME) Board
14、on Nuclear Codes and Standards (BNCS) and the American Nuclear Society (ANS) Standards Board mutually agreed in 2004 to form the Nuclear Risk Management Coordinating Committee (NRMCC). NRMCC was chartered to coordinate and harmonize standards activities related to probabilistic risk assessment (PRA)
15、 between ASME and ANS. A key activity resulting from NRMCC was the development of PRA standards structured around the Levels of PRA (i.e., Level 1, Level 2, Level 3) to be jointly issued by ASME and ANS. In 2011, ASME and ANS decided to combine their respective PRA standards committees to form the A
16、SME/ANS Joint Committee on Nuclear Risk Management (JCNRM). In 2006, ASME BNCS established the New Reactor Task Group under the Committee on Nuclear Risk Management (CNRM) to evaluate the need for codes and standards to support the design, construction, licensing, and operation of advanced nonlight
17、water reactor (non-LWR) nuclear power plants (NPPs). Following the formation of JCNRM, the New Reactor Task Group is now known as the ASME/ANS JCNRM Advanced Non-LWR PRA Standard Writing Group (Non-LWR WG). The charter of the Non-LWR WG is to develop recommendations to JCNRM on requirements for the
18、performance of PRAs for advanced non-LWRs. The expected applications of such PRAs include input to licensing and design decisions such as selection of licensing-basis events and safety classification of equipment, satisfaction of U.S. Nuclear Regulatory Commission PRA requirements for advanced non-L
19、WRs, and support of risk-informed applications for advanced non-LWR NPPs. With the concurrence of JCNRM, the Non-LWR WG decided early on that a new PRA standard was needed to support a broad range of applications for advanced reactor designs. To support a diverse mixture of reactor concepts, includi
20、ng high-temperature gas-cooled reactors, liquid metalcooled fast reactors, and small modular reactors, CNRM decided early on to develop this new PRA standard on a reactor-technology-neutral basis using established technology-neutral risk metrics common to existing light water reactor (LWR) Level 3 P
21、RAs. Such risk metrics include frequency of radiological consequences, e.g., dose, health effects, and property damage impacts. In order to support a wide range of applications defined by the non-LWR stakeholders, the scope of this standard is very broad and is comparable to a full-scope Level 3 PRA
22、 for an LWR with a full range of plant operating states (POSs) and hazards. Because some of the advanced non-LWR designs supported by this standard include modular reactor concepts, this standard includes requirements that support an integrated risk of multireactor facilities including accidents on
23、two or more reactor units concurrently. In preparing the technical requirements in this standard, the Non-LWR WG made use of source material from the existing ASME/ANS PRA standard ASME/ANS RA-Sa-2009 as revised in 2013 in ASME/ANS RA-Sb-2013 (Addendum B) as well as draft PRA standards under develop
24、ment by ANS for Low-Power-and-Shutdown PRA, Level 2 PRA, and Level 3 PRA. JCNRM has approved the use of draft ANS standards with a requirement to follow up with changes to reflect changes in the supporting standards. Such changes could necessitate a need for revisions to this standard. The use of so
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASMEANSRAS142013PROBABILISTICRISKASSESSMENTSTANDARDFORADVANCEDNONLWRNUCLEARPOWERPLANTSPDF

链接地址:http://www.mydoc123.com/p-456163.html