ASHRAE HVAC SYSTEMS AND EQUIPMENT SI CH 29-2012 AIR CLEANERS FOR PARTICULATE CONTAMINANTS.pdf
《ASHRAE HVAC SYSTEMS AND EQUIPMENT SI CH 29-2012 AIR CLEANERS FOR PARTICULATE CONTAMINANTS.pdf》由会员分享,可在线阅读,更多相关《ASHRAE HVAC SYSTEMS AND EQUIPMENT SI CH 29-2012 AIR CLEANERS FOR PARTICULATE CONTAMINANTS.pdf(12页珍藏版)》请在麦多课文档分享上搜索。
1、29.1CHAPTER 29AIR CLEANERS FOR PARTICULATE CONTAMINANTSAtmospheric Dust. 29.1Aerosol Characteristics 29.1Air-Cleaning Applications . 29.2Mechanisms of Particle Collection . 29.2Evaluating Air Cleaners 29.2Air Cleaner Test Methods. 29.3Types of Air Cleaners. 29.4Filter Types and Performance 29.5Selec
2、tion and Maintenance 29.8Air Cleaner Installation . 29.10Safety Considerations. 29.10HIS chapter discusses removal of contaminants from bothTventilation and recirculated air used for conditioning buildinginteriors. Complete air cleaning may require removing of airborneparticles, microorganisms, and
3、gaseous contaminants, but thischapter only covers removal of airborne particles and briefly dis-cusses bioaerosols. Chapter 46 of the 2011 ASHRAE HandbookHVAC Applications covers the removal of gaseous contaminants.The total suspended particulate concentration in applications dis-cussed in this chap
4、ter seldom exceeds 2 mg/m3and is usually lessthan 0.2 mg/m3of air. This contrasts with flue gas or exhaust gasfrom processes, where dust concentration typically ranges from 200to 40 000 mg/m3. Chapter 26 discusses exhaust-gas control.Most air cleaners discussed in this chapter are not used in exhaus
5、tgas streams, because of the extreme dust concentration, high tem-perature, and high humidity that may be encountered in processexhaust. However, the air cleaners discussed here are used exten-sively in supplying makeup air with low particulate concentration toindustrial processes.ATMOSPHERIC DUSTAt
6、mospheric dust is a complex mixture of smokes, mists, fumes,dry granular particles, bioaerosols, and natural and synthetic fibers.When suspended in a gas such as air, this mixture is called an aero-sol. A sample of atmospheric dust usually contains soot and smoke,silica, clay, decayed animal and veg
7、etable matter, organic materialsin the form of lint and plant fibers, and metallic fragments. It mayalso contain living organisms, such as mold spores, bacteria, andplant pollens, which may cause diseases or allergic responses.(Chapter 11 of the 2009 ASHRAE HandbookFundamentals con-tains further inf
8、ormation on atmospheric contaminants.) A sampleof atmospheric dust gathered at any point generally contains mate-rials common to that locality, together with other components thatoriginated at a distance but were transported by air currents or dif-fusion. These components and their concentrations va
9、ry with thegeography of the locality (urban or rural), season of the year,weather, direction and strength of the wind, and proximity of dustsources.Aerosol sizes range from 0.01 m and smaller for freshly formedcombustion particles and radon progeny; to 0.1 m for aged cookingand cigarette smokes; and
10、 0.1 to 10 m for airborne dust, microor-ganisms, and allergens; and up to 100 m and larger for airbornesoil, pollens, and allergens.Concentrations of atmospheric aerosols generally peak at sub-micrometre sizes and decrease rapidly as the particulate size in-creases above 1 m. For a given size, the c
11、oncentration can vary byseveral orders of magnitude over time and space, particularly nearan aerosol source, such as human activities, equipment, furnishings,and pets (McCrone et al. 1967). This wide range of particulate sizeand concentration makes it impossible to design one cleaner for allapplicat
12、ions.AEROSOL CHARACTERISTICSThe characteristics of aerosols that most affect air filter perfor-mance include particle size and shape, mass, concentration, andelectrical properties. The most important of these is particle size.Figure 3 in Chapter 11 of the 2009 ASHRAE HandbookFunda-mentals gives data
13、 on the sizes and characteristics of a wide range ofairborne particles that may be encountered.Particle size in this discussion refers to aerodynamic particle size.Particles less than 0.1 m in diameter are generally referred to asultrafine-mode or nanoparticles, those between 0.1 and 2.5 m aretermed
14、 fine mode, and those larger than 2.5 m as coarse mode.Whereas ultrafine- and fine-mode particles may be formed together,fine- and coarse-mode particles typically originate by separatemechanisms, are transformed separately, have different chemicalcompositions, and require different control strategie
15、s. Vehicle ex-haust is a major source of ultrafine particles. Ultrafines are mini-mally affected by gravitational settling and can remain suspendedfor days at a time. Fine-mode particles generally originate fromcondensation or are directly emitted as combustion products. Manymicroorganisms (bacteria
16、 and fungi) either are in this size range orproduce components this size. These particles are less likely to be re-moved by gravitational settling and are just as likely to deposit onvertical surfaces as on horizontal surfaces. Coarse-mode particlesare typically produced by mechanical actions such a
17、s erosion andfriction. Coarse particles are more easily removed by gravitationalsettling, and thus have a shorter airborne lifetime.For industrial hygiene purposes, particles 5 m in diameter areconsidered respirable particles (RSPs) because a large percentageof them may reach the alveolar region of
18、the lungs. A cutoff of5.0 m includes 80 to 90% of the particles that can reach the func-tional pulmonary region of the lungs (James et al. 1991; Phalen et al.1991). Willeke and Baron (1993) describe a detailed aerosol sam-pling technique for RSPs, including the use of impactors. See alsothe discussi
19、on in the section on Sizes of Airborne Particles in Chap-ter 11 of the 2009 ASHRAE HandbookFundamentals.Bioaerosols are a diverse class of particulates of biological ori-gin. They are of particular concern in indoor air because of theirassociation with allergies and asthma and their ability to cause
20、 dis-ease. Chapters 10 and 11 of the 2009 ASHRAE HandbookFunda-mentals contains more detailed descriptions of these contaminants.Airborne viral and bacterial aerosols are generally transmitted bydroplet nuclei, which average about 3 m in diameter. Fungal sporesare generally 2 to 5 m in diameter (Whe
21、eler 1994). Combinations ofproper ventilation and filtration can be used to control indoor bio-aerosols. Morey (1994) recommends providing a ventilation rate of7 to 16.5 L/s per person to control human-shed bacteria. ACGIH(1989) recommends dilution with a minimum of 7 L/s per person. Italso reports
22、50 to 70% ASHRAE atmospheric dust-spot efficiencyThe preparation of this chapter is assigned to TC 2.4, Particulate Air Con-taminants and Particulate Contaminant Removal Equipment.29.2 2012 ASHRAE HandbookHVAC Systems and Equipment (SI)filters can remove most microbial agents 1 to 2 m in diameter.Wh
23、eeler (1994) states that 60% ASHRAE atmospheric dust-spotefficiency filters remove 85% or more of particles 2.5 m in diame-ter, and 80 to 85% efficiency filters remove 96% of 2.5 m particles.AIR-CLEANING APPLICATIONSDifferent fields of application require different degrees of aircleaning effectivene
24、ss. In industrial ventilation, only removing thelarger dust particles from the airstream may be necessary for clean-liness of the structure, protection of mechanical equipment, andemployee health. In other applications, surface discoloration mustbe prevented. Unfortunately, the smaller components of
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAEHVACSYSTEMSANDEQUIPMENTSICH292012AIRCLEANERSFORPARTICULATECONTAMINANTSPDF

链接地址:http://www.mydoc123.com/p-455107.html