ASHRAE 4671-2004 A Comparative Study of the Airside Performance of Winglet Vortex Generator and Wavy Fin-and-Tube Heat Exchangers《小翼涡发生器和波纹翅片管式换热器 在机场禁区内的表现比较研究》.pdf
《ASHRAE 4671-2004 A Comparative Study of the Airside Performance of Winglet Vortex Generator and Wavy Fin-and-Tube Heat Exchangers《小翼涡发生器和波纹翅片管式换热器 在机场禁区内的表现比较研究》.pdf》由会员分享,可在线阅读,更多相关《ASHRAE 4671-2004 A Comparative Study of the Airside Performance of Winglet Vortex Generator and Wavy Fin-and-Tube Heat Exchangers《小翼涡发生器和波纹翅片管式换热器 在机场禁区内的表现比较研究》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、A Comparative Study of the Airside Performance of Winglet Vortex Generator and Wavy Fin-and-Tube Heat Exchangers C.C. Wang, Ph.D. Y.J. Chang Member ASHRAE C.S. Wei ABSTRACT This study presents airside performance of the delta winglet vortexgenerator (VG) vs. a wavvfn surface in both dv and wet condi
2、tions. TheJin pitch of the test samples is 1.7 mm and the number of tube rows is 2 and 4, respectively. For the airside performance tested in dry condition, the heat transfer coeficient for the wavyJin surface is only 6% higher than that of the winglet VG at N = 2, but thepressure drop is about 15%
3、higher: Conversely, the heat transfer coeficients for the winglet surface are higher than those of the wavyJin surface by approximately 5% with comparable pressure drop at N = 4. For the airside performance tested in wet condition, the heat transferperformance of the winglet VG is superior to that o
4、f the wavy surface for both N = 2 and N = 4. Furthermore, the pressure drop for winglet VG is considerably lower (15-40%). It is likely that this phenomenon is due to better condensate drainage caused by the swirled motion of the VG surface. INTRODUCTION Extended surfaces or fins are employed in hea
5、t exchang- ers for effectively improving the overall heat transfer perfor- mance. There is extensive literature on this subject for applications in connection to compact heat exchangers. The most common enhanced surfaces are the interrupted surfaces in the form of slit and louver. A recent review ar
6、ticle by Wang (2000) clearly identified the progress of patents relevant to the enhanced surfaces. Of the 50 patents surveyed, 90% of them are related to the interrupted surfaces. Generally, the associ- ated pressure drops of the interrupted fin surface are tremen- dous, irrespective of their signif
7、icant improvement of the heat transfer performance. However, a recent design called a vortex B.C. Yang Member ASHRAE generator can improve the heat transfer performance without pronounced increase in pressure drop. The vortex generator provides the swirl motion in which additional transverse velocit
8、y components do not directly contribute to the increase of pressure drop as that of longitudinal velocity gradient. As a consequence, the heat transfer performance is improved with only a moderate increase of pressure drop (Jacobi and Shah 1995). There are various types of vortex generators used in
9、aerodynamic application (wedge, plough, ramp, scoop, dome, wheeler, wing type, and wave element ESDU 19931). For applications to compact heat exchangers, most of the previous research has been related to the delta-winglet vortex generator, such as that done by Fiebig (1998) and his Co-workers. Recen
10、tly Wang et al. (2002a, 2002b) conducted flow visual- ization experiments of the vortex generator having winglet configurations in enlarged fin-and-tube heat exchangers for both in-line and staggered arrangements. Their flow visual- ization results have shown that the use of the vortex generator in
11、a fin-and-tube heat exchanger is promising. The purpose of this study is full-scale testing of vortex generators in fin-and- tube heat exchangers to examine their feasibility during prac- tical application. EXPERIMENTAL APPARATUS The test samples consisted of two vortex generators having two and fou
12、r rows, respectively, with a tube diameter before expansion of 7.94 mm. The corresponding longitudinal and transverse tube pitch is 19.05 and 25.4 mm and the fin pitch is 1.7 111111. The fin thickness is O. 15 mm. For comparison purposes, two wavy fin-and-tube heat exchangers with iden- tical tube r
13、ow and fin pitch were made. Detailed dimensions of the fin patterns for both wavy and vortex generator are given C.C. Wang, Y.J. Chang, C.S. Wei, and B.C. Yang are with the Energy Wang et al. 2001). The test conditions approximate those encountered with typical air-conditioning applications. The ene
14、rgy balance between the airside and tube side was within 3% for both dry and wet tests. RESULTS AND DISCUSSION Figure 3 presents the test results for the winglet VG and wavy fin surface in dry condition. Results are presented as heat transfer coefficients and pressure drops vs. frontal velocities ra
15、nging from 0.7 to 2.0 ms. As expected, both heat transfer coefficients and the pressure drops increased with the frontal 54 ASHRAE Transactions: Research velocity. For the dry test condition at N = 2, the heat transfer coefficients for the wavy fin exceed those of the VG surface by approximately 3-5
16、%, but the accompanying AP is 15% higher. However, the heat transfer performance is reversed for N = 4. As shown in Figure 3, the heat transfer coefficients for VG surfaces are about 10% higher than for the wavy fin surface, and the corresponding pressure drops are marginally lower than with the wav
17、y fin surface. As is well known, the presence of round tube may induce longitudinal horseshoe 0.6 1 1.6 2 2.6 VJmM Figure 3 Airside performance for wavy and winglet VG surface in dry conditions. vortex that will spiral around the tube periphery and toward the downstream. The horseshoe vortices play
18、an important role in heat transfer augmentation by providing better mixing of the core airflow with air adjacent to the fin surface. For a smaller number of tube rows, such as N = 2, the presence of an addi- tional vortex generator (winglet VG) may not be so effective. In this case the heat transfer
19、 coefficient at the entrance of the fin-and-tube heat exchanger is already high and the horseshoe vortex generated by the tube row only improves the heat trans- fer performance thereafter. Furthermore, the heat transfer coefficient can be slightly improved by the present wavy fin geometry. The wavy
20、height of this study is 1.18 mm and the corrugation angle is only 13.9 degrees; based on previous studies by Wang et al. (1999) and Ramadhyani (1986), appre- ciable heat transfer augmentation can only be obtained at a corrugation angle larger than 20“. As a consequence, one can see the heat transfer
21、 coefficient with vortex generators is slightly lower than that of the wavy fin surface at N = 2. Never- theless, one can see the pressure drop for the VG surface is roughly 15% lower than the wavy fin surface. This is probably due to (1) removal ofthe ineffective secondary flow behind the tube row
22、with the presence of the vortex generator (see Figure 4d about the flow pattern of the winglet VG) and (2) the high pressure drop caused by the wavy fin surface. For the flow field inside a wavy and plain channel, Wang et al. (2003) conducted an experiment of flow visualization via the injected dye
23、technique. At a corrugation angle of 15“ and Re 500, they reported an unsteady swing of flow field after the third corrugation. In addition, the unsteady dye streak shows a slightly swirled motion where the axis of the rotation is some- what perpendicular to the flow direction. This may eventually l
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAE46712004ACOMPARATIVESTUDYOFTHEAIRSIDEPERFORMANCEOFWINGLETVORTEXGENERATORANDWAVYFINANDTUBEHEATEXCHANGERS

链接地址:http://www.mydoc123.com/p-454255.html