AGMA 14FTM16-2014 The Modified Life Rating of Rolling Bearings - A Criterion for Gearbox Design and Reliability Optimization.pdf
《AGMA 14FTM16-2014 The Modified Life Rating of Rolling Bearings - A Criterion for Gearbox Design and Reliability Optimization.pdf》由会员分享,可在线阅读,更多相关《AGMA 14FTM16-2014 The Modified Life Rating of Rolling Bearings - A Criterion for Gearbox Design and Reliability Optimization.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、14FTM16 AGMA Technical Paper The Modified Life Rating of Rolling Bearings - A Criterion for Gearbox Design and Reliability Optimization By A. Gabelli, A. Doyer, and G. Morales-Espejel, SKF France2 14FTM16 The Modified Life Rating of Rolling Bearings - A Criterion for Gearbox Design and Reliability O
2、ptimization Antonio Gabelli, Armel Doyer, and Guillermo Morales-Espejel, SKF France The statements and opinions contained herein are those of the author and should not be construed as an official action or opinion of the American Gear Manufacturers Association. Abstract Generally speaking, engineers
3、 learn that the bearing L10life can be estimated using the so called “C/P method” also known as the “basic rating life” of the bearing. This method finds its root in the 1940s when Swedish engineers G. Lundberg and A. Palmgren developed their mathematical model for the bearing life calculation. In t
4、he following decades, this theory has been refined based on a better understanding of the fatigue life phenomena, as well as improvements in the material, design and manufacturing of the bearing. These findings were implemented in ISO 281 standard in 1977, under the title of “adjusted rating life”.
5、Clearly, bearing manufacturers and industry acknowledged the need to adjust the basic rating life, taking into account the most important influencing factors affecting bearing performance. Since that time, further developments have led to what is called today the “modified rating life”, as released
6、in ISO 281:2007, which includes the aisolife modification factor. In the paper, the succession of equations used for bearing life ratings are reviewed and current bearing life rating practices are discussed in detail. It is shown that despite the introduction of the adjustment factor of the basic ra
7、ting life more than 30 years ago and the standardization of the aisomodification factor in 2007, the use of these improved calculation methods for the ratings of bearing performance are not yet part of the calculation practices of every engineer. Indeed many users simply refer to the old model in or
8、der to comply with existing established practices. As a consequence those users may release technical specifications referring only to the requirements for the L10basic rating life. This in turns leads to many gearbox manufacturers still making design decisions based on the old ISO 281:1977 “basic r
9、ating life” standard. The implication of not adopting modern rating life as described in ISO 281:2007 is, in a way, equivalent to disregarding 30 years of bearing technology development. This may lead to design selections that in some cases can be quite conservative whereas in others, by ignoring cr
10、itical aspects absent from the simple “basic rating” model, may lead also to non-conservative design. The paper addresses these issues in the specific context of industrial gearbox bearing design. The discussion points are illustrated using an example of the design analysis of a helical gearbox appl
11、ication. Copyright 2014 American Gear Manufacturers Association 1001 N. Fairfax Street, Suite 500 Alexandria, Virginia 22314 October 2014 ISBN: 978-1-61481-108-4 3 14FTM16 The Modified Life Rating of Rolling Bearings - A Criterion for Gearbox Design and Reliability Optimization Antonio Gabelli, Arme
12、l Doyer, and Guillermo Morales-Espejel, SKF France Introduction The concepts of rolling bearing rating life and basic load rating (load carrying capacity) were introduced by A. Palmgren in 1937 1. At that time and until the 1950s, most bearing manufacturers listed in their catalogues the load admiss
13、ible on the bearing for thousands hours of operation at five different speeds. In those days the selection of a bearing size for a given application was rather a simple matter. The concept of a single rating factor to characterize the dynamic capacity of the bearing was new and it was initially used
14、 only within the bearing company that developed this new technology. This rating method was backed by the theory of Lundberg and Palmgren (L-P) 2 and by the Weibull statistics 3. It was found that it could provide a correct interpretation of the many series of endurance tests available at the time,
15、2, 4, 5. This calculation method prevailed on all the others methods used at the time and it was adopted by ISO in 1962. Before the ISO acceptance, the L-P model for life ratings was independently validated by Lieblein and Zelen 1956 4 of the U.S. National Bureau of Standard using endurance test dat
16、a provided from different bearing manufacturers. In total 213 test series were analyzed amounting to a total of 4948 endurance tested bearings. Furthermore, the statistical setting of the bearing life dispersion was also assessed by Tallian of the Philadelphia testing laboratories in 1962 5. In the
17、Tallian investigation a composite sample for a total of over 2500 endurance tested bearings were analyzed. The original L-P model constituted the foundation, and it is still today the nucleus, of all national and international standards for fatigue life rating of rolling bearings including subsequen
18、t theories and developments. Basically the L-P theory 2 laid down the basis for the calculation of the dynamic load rating and equivalent dynamic load of rolling bearings as it is applied today in ISO 281 8 basic rating life equation: 10pCLP(1) where L10 is rated fatigue life, at 90% reliability, in
19、 million revolutions; C is basic dynamic load rating of the bearing for a rated fatigue life of one million revolutions; P is standardized dynamic equivalent load of the bearing; p is life equation exponent. The availability of a standard method for the dynamic rating of rolling bearings is useful t
20、o the mechanical industry as it allow streamlining product specifications for large-scale manufacturing and worldwide compatibility and exchangeability of rolling bearings. The dynamic load rating allows bearing users to compare similar bearing types made by different manufacturers. Manufacturers, o
21、n the other hand, can profit from the ISO standards to rate their products, of any size and type, using just the internal nominal geometry of the bearing. Apparently the ISO standard for bearing load ratings provides a win-win situation to all parties and this explains the widespread use of this sta
22、ndard in the mechanical industry. Mechanical designers however need to be well informed in order to take full advantage of the opportunities offered by standardized bearing load ratings. In particular they must be aware of the many aspects and changes that have taken place in this field through the
23、years and how these changes have impacted gearbox performance and design practices. In this paper we will examine at first the evolution of standardized bearing life rating that has taken place after ISO 281 was first instituted in 1962. The technical justifications behind each different change will
24、 be explained, showing also the impact that variation of bearing life ratings had on gearbox design and product performance through the years. 4 14FTM16 Present use of the standard will also be discussed showing that there are different interpretations and some misuses of the present standard in the
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA14FTM162014THEMODIFIEDLIFERATINGOFROLLINGBEARINGSACRITERIONFORGEARBOXDESIGNANDRELIABILITYOPTIMIZATIONPDF

链接地址:http://www.mydoc123.com/p-422209.html