AGMA 09FTM19-2009 The Effect of Gearbox Architecture on Wind Turbine Enclosure Size《齿轮箱结构对风力涡轮机外壳尺寸的影响》.pdf
《AGMA 09FTM19-2009 The Effect of Gearbox Architecture on Wind Turbine Enclosure Size《齿轮箱结构对风力涡轮机外壳尺寸的影响》.pdf》由会员分享,可在线阅读,更多相关《AGMA 09FTM19-2009 The Effect of Gearbox Architecture on Wind Turbine Enclosure Size《齿轮箱结构对风力涡轮机外壳尺寸的影响》.pdf(19页珍藏版)》请在麦多课文档分享上搜索。
1、09FTM19AGMA Technical PaperThe Effect of GearboxArchitecture on WindTurbine Enclosure SizeBy C.D. Schultz, Beyta GearServiceThe Effect of Gearbox Architecture on Wind TurbineEnclosure SizeCharles D. Schultz, Beyta Gear ServiceThe statements and opinions contained herein are those of the author and s
2、hould not be construed as anofficial action or opinion of the American Gear Manufacturers Association.AbstractGearbox architecture the type of gearing used, the overall gear ratio, the number of increaser stages, thenumber of meshes, the ratio combinations, and the gear proportions- can have a profo
3、und effect on the“package”sizeofawindturbine.Inthispapertheauthorappliesacommonsetofrequirementstoavarietyofpotentialgearboxdesignsfora2.0mWwindturbineandcomparestheresulting“gearedcomponent”weights,gearbox envelope sizes, generator sizes, and generator weights. Each design option is also evaluated
4、formanufacturing difficulty via a relative cost estimate.Copyright 2009American Gear Manufacturers Association500 Montgomery Street, Suite 350Alexandria, Virginia, 22314September 2009ISBN: 978-1-55589-972-13The Effect of Gearbox Architecture on Wind Turbine Enclosure SizeCharles D. Schultz, Beyta Ge
5、ar ServiceThe importance of macro geometryMuchhasbeenwritteninrecentyearsonoptimizingthe “micro” geometry of gears, i.e., determining thebest profile or lead modifications. With this paperwe propose to take a step back and consider the“macro” geometry instead. By “macro geometry”wemeanthenumber of s
6、tages inthegear train,thetype of gears used, and the amount of gear ratioused in each stage. This basic architecture of agearbox, its “macro geometry”, is a fundamentalfactor in meeting the overall design objectives.Enhanced micro geometry can improve perfor-mance in the field but cannot make up for
7、 poordecision making on the basic design. Through thedesign exercise described in this paper we will alsoillustrate the interaction of “architecture” with theoverall sizeof thedrivepackage. Oneof theissueswe have with the recent emphasis on microgeometry is that the modifications can only beoptimize
8、d for a specific load condition. For manyapplications,suchaswindturbines,thegearboxwillbe subjected to a very wide range of conditions, formost of which it will not be “optimized.” If the basicgear train design is well thought out it will be lessdependent upon “optimization” for its success.Design c
9、onditionsThe design conditions selected represent asimplified specification for a 2.0 mW wind turbinegearbox,seeTable 1. Theydonotreflectanyactualdesign project and the results presented in thispaper are not intended to be applied to any futureproject. The typical wind turbine design specifica-tion
10、will include a much more detailed loadspectrum, for example, alongwith requirements forintensivegear ratinganalysis. The conditions usedfor this paperprovidea“level playingfield” bywhichpreliminary designs could be rapidly developed.The objective is to compare preliminary designs insuch a way as to
11、identify those which merit furtherconsideration on actual projects.Table 1. Design conditionsDesign inputs Transmitted power: 2.0 mW x 1.5application factor = 3.0 mW 4,023HPRequired life = 85,000 hours at fullloadInput speed: 15 rpmOutput speeds: 150, 300, 600, 900,1200, 1500, 1800 rpmCorresponding
12、increaser ratios: 10,20, 40, 60, 80, 100, and 120:1DesignconstraintsMinimum number of pinion teeth: 18Maximum face width/pinion pitchdiameter ratio: 1.25 per helixMinimum face contact ratio mf =1.00per helixNumber of planets- 5 for ratios up to 4:1- 4 for ratios between 4.05:1 i.e., the rotational i
13、nertia of thegearbox acts as a flywheel to smooth out loadfluctuations. They might also offer a betteropportunity to repair or rebuild the gearbox withoutremoving it from the tower.AcknowledgementsTheauthorwishestothankNoel Davisof VelaGearSystem and Mark Haller of Haller Wind Consultingfor their wi
14、secounsel duringthis project. Hethankshis wifeJanfor her patienceandtheAGMA stafffortheir support during the writing process.872686666118116685762716652Two stages, single helical Three stages, single helical Two stages, planetarystage with (5) planets,single helical output stageThree stages, planeta
15、rystage with (5) planets, singlehelical intermediate andoutput stagesFigure 4. 20:1 gear train options9362 5073687311912470696472Two stages, single helical Three stages, single helical Two stages, planetary stagewith (3) planets, singlehelical output stageThree stages, planetarystage with (5) planet
16、s,single helical intermediateand output stagesFigure 5. 40:1 gear train options980481321206836626272657243Stage 2carrierThree stages, single helical Three stages, planetarystage with (5) planets,single helical intermediateand output stagesThree stages, (2) planetarystages with (5) planets and(4) pla
17、nets, single helicaloutput stageFour stages, single helicalFigure 6. 60:1 gear train options80416747691206272726236133Three stages, single helical Three stages, planetarystage with (5) planets,single helical intermediateand output stagesThree stages, (2) planetarystages with (5) planets and(4) plane
18、ts, single helicaloutput stageFour stages, single helicalFigure 7. 80:1 gear train options1042743665129715657796272134Three stages, single helicalStage 2carrierThree stages, planetarystage with (5) planets,single helical intermediateand output stagesThree stages, (2) planetarystages with (5) planets
19、 and(4) planets plus singlehelical output stageFour stages, single helicalFigure 8. 100:1 gear train options13474421305672625771653680Stage 2carrierThree stages, single helical Three stages, planetarystage with (5) planets,single helical intermediateand output stageThree stages, (2)planetary stages
20、with (5)planets and (4) planetsplus single helical outputstageFour stages, single helicalFigure 9. 120:1 gear train options11Table 2. Evaluation of design casesCase IDGearboxCostcomparisonVolume comparison Weight comparisonaseearboxtypeRelative costRelativevolumeApproximatevolume, ft3RelativeweightE
21、stimated totalweight, lb10:ratiosA 1DH 3.44 6.62 428 5.84 50,041B 2HH 2.38 4.87 315 3.66 31,329C 1P 2.04 4.52 292 4.12 35,289D 2PH 1.12 1.43 93 1.25 10,72420:ratiosA 2HH 2.46 4.94 320 4.01 34,340B 3HHH 2.74 4.63 300 3.85 32,964C 2PH 1.21 2.29 148 1.52 13,054D 3PHH 1.53 2.09 135 1.53 13,14140:ratiosA
22、 2HH 2.82 6.60 427 4.91 42,050B 3HHH 2.71 4.75 307 4.38 37,498C 2PH 1.82 3.33 216 3.08 26,363D 3PHH 1.45 2.10 136 1.52 13,03960:ratiosA 3HHH 2.74 4.79 310 3.95 33,813B 3PHH 1.46 1.90 123 1.58 13,519C 3PPH 1.25 1.11 72 1.28 10,989D 4HHHH 2.97 5.27 341 3.95 33,79580:ratiosA 3HHH 2.75 4.79 310 4.00 34,
23、251B 3PHH 1.56 1.94 126 1.70 14,577C 3PPH 1.26 1.06 68 1.32 11,345D 4HHHH 2.94 5.31 344 3.94 33,781100:ratiosA 3HHH 2.77 5.32 345 4.19 35,894B 3PHH 1.64 2.25 146 1.77 15,170C 3PPH 1.20 1.00 65 1.28 10,985D 4HHHH 2.94 5.35 346 3.95 33,862120:ratiosA 3HHH 2.79 5.36 347 4.23 36,268B 3PHH 1.54 2.28 148
24、1.75 14,982C 3PPH 1.00 1.00 65 1.00 8,565D 4HHHH 2.64 5.35 346 4.13 35,357Number of stages; DH = double helical, P = planetary, H = helical12Table 3. 10:1 ratio - 150 RPM output speed design casesCase A Case B Case C Case DStage 1 Stage 1 Stage 2 Stage 1 Stage 1 Stage 2Number ofstages1 2 1 2Overall
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA09FTM192009THEEFFECTOFGEARBOXARCHITECTUREONWINDTURBINEENCLOSURESIZE 齿轮箱 结构 风力 涡轮机 外壳 尺寸 影响 PDF

链接地址:http://www.mydoc123.com/p-422094.html