AGMA 07FTM11-2007 Helicopter Accessory Gear Failure Analysis Involving Wear and Bending Fatigue《含齿轮和弯曲疲劳的直升机辅助齿轮的故障分析》.pdf
《AGMA 07FTM11-2007 Helicopter Accessory Gear Failure Analysis Involving Wear and Bending Fatigue《含齿轮和弯曲疲劳的直升机辅助齿轮的故障分析》.pdf》由会员分享,可在线阅读,更多相关《AGMA 07FTM11-2007 Helicopter Accessory Gear Failure Analysis Involving Wear and Bending Fatigue《含齿轮和弯曲疲劳的直升机辅助齿轮的故障分析》.pdf(14页珍藏版)》请在麦多课文档分享上搜索。
1、07FTM11Helicopter Accessory Gear Failure AnalysisInvolving Wear and Bending Fatigueby: G. Blake and D. Schwerin,Rolls-Royce Corporation - Transmission and StructuresTECHNICAL PAPERAmerican Gear Manufacturers AssociationHelicopter Accessory Gear Failure Analysis InvolvingWear and Bending FatigueGrego
2、ry Blake and Doug Schwerin, Rolls-Royce Corporation - Transmissionsand StructuresThe statements and opinions contained herein are those of the author and should not be construed as anofficial action or opinion of the American Gear Manufacturers Association.AbstractGear tooth wear is a very difficult
3、 phenomenon to predict analytically. The failure mode of wear is closelycorrelated to the lambda ratio. Wear can be the limiting design parameter for long-term durability. Also, thefailure mode of wear can manifest into more sever failure modes such as bending. Presented is a failureanalysis in whic
4、h this occurred.Alegacyaerospacegearmeshexperiencedninefailureswithinatwoyeartimeperiod. Thefailuresoccurredaftermorethaneightyears inserviceand withintight rangeof cycles to oneanother. Eachfailure resultedinthelossofallgearteethwithoriginsconsistentwithclassicbendingfatigue.Noneofthefailureswerede
5、tectedprior to tooth loss.Non-failed gears, with slightly lower time than the failed gears, were removed from service and inspected.Gear metrology measurements quantified a significant amount of wear. The flank form of these worn gearswas measured and the measured data used to analytically predict t
6、he new dynamic load distribution andbending stress. To predict if the failure mode of wear was expected for this gear mesh, an empiricalrelationship of wear to lambda ratio was created using Rolls-Royce field data from multiple gear meshes inmultiple applications.The empirical understanding of wear
7、coupled with the analysis was used in an analytical design ofexperiments (ADOE). The results of the ADOE were then used to guide design changes. Presented are themetallurgicalfailureanalysisfindings,dynamicgearmeshanalysis,theempiricalwearratecurvedeveloped,results of the ADOE, and design changes.Co
8、pyright 2007American Gear Manufacturers Association500 Montgomery Street, Suite 350Alexandria, Virginia, 22314October, 2007ISBN: 978-1-55589-915-81Helicopter Accessory Gear Failure Analysis Involving Wear and Bending FatigueGregory Blake and Doug Schwerin,Rolls-Royce Corporation Transmissions and St
9、ructuresIntroductionGear tooth wear is a very difficult phenomenon topredict analytically. The failure mode of wear isclosely correlated to the lambda ratio 12. Wearcan be the limiting design parameter for long-termdurability. The failure mode of wear can manifestinto more severe failure modes such
10、as bending.Presented is a failure analysis in which this oc-curred.Eight events occurred in a legacy aerospace gearmesh within a three-year time period. The failuresoccurred after more than eight years in serviceandwithin a tight range of cycles to one another. Eachfailure resulted in the loss of al
11、l gear teeth with ori-gins consistent with classic bending fatigue. Thefailures were not detected prior to tooth loss.Non-failed gears, with slightly lower time than thefailed gears, were removed from service and in-spected. Gearmetrologymeasurementsquantifiedasignificantamountofwear.Theflankformoft
12、heseworn gears was measured and the measured dataused to analytically predict the new dynamic loaddistributionandbendingstress. Topredictifthefail-uremodeof wear was expected for this gear mesh,an empirical relationship of wear to lambda ratiowascreatedusingRolls-Roycefielddatafrommul-tiple gear mes
13、hes in multiple applications.The empirical understanding of wear coupled withthe analysis was used in an analyticaldesign of ex-periments(DOE). TheresultsoftheanalyticalDOEwere then used to guide design changes. Present-edarethemetallurgicalfailureanalysisfindings,dy-namic gear mesh analysis, the em
14、pirical wear ratecurvedeveloped, resultsof theanalyticalDOE,anddesign changes.Nomenclature Specific film thickness, the oil filmthickness divided by the compos-ite roughness 3.MOS Margin of safety, the allowablevaluedividedbythepredictedval-ue. MOS should be greater than1.0ChipdetectorA detection de
15、vice used in aero-space gearboxes to detect earlyfailure involving metal generationDOE Design of experimentsRaAverage roughness of involuteprofile minSuperfinishingAn isotropic chemical processperformed to achieve improvedsurface finishTiOil inlet temperature FWrWearrateexpressedininchespercycle x 1
16、015Overview of gear systemThe failed gear mesh was used to drive an electricgenerator installed on a Rolls-Royce gas turbineengine in a helicopter.A schematic of the gear train is shown in Figure 1.The gear meshes are numbered one through four.Gear meshfour is thesparedrive gear mesh that isthesubje
17、ct of thispaper. Thefailedpinionandmat-inggear werecarburized, ground, and shot peenedAMS6265. The engine torque was input throughgear mesh number one.Background of failuresThe initial indication to the pilot was generator out-put failure. Additionally, two aircraft had chip lightindications just pr
18、ior to landing. Two others hadchips discovered on the magnetic plug when trou-bleshootingthecauseofageneratorproblem. Oneaircraft had a chip light during the mission (chip de-tectors had large and numerous chips when ex-amined after flight the engine was removed andreplaced). The sixthevent occurred
19、before takeoffwith mission equipment on and blades in flat pitchposition. In all cases, the aircraft generator driveshaft and spare drive gearshaft in the accessorygearbox (AGB) turned freely. Each failure resultedinallgearteethbeingfatiguedormilledoffthesparedrive gear (Figure 4).2Figure 1. Schemat
20、ic of gear trainEight events occurred over a three-year period.Fiveoftheeightwerefromthesamefleet. Theeightfailures are detailed in Table 1. A lognormal proba-bility plot was createdtoshowthescatter inthefail-ure data. The bending fatigue failures occurred be-yond ten million cycles and within a sma
21、ll range ofcycles as shown in Figure 2.Failure investigationAnengineeringteamconductedadetailedfailurein-vestigation. Dynamics, geometry, manufacturingquality, gear design, application, lubrication quality,operationinthefield,andmaterialswerecategoriesinvestigated in detail. None of these categories
22、were identified as root cause during the investiga-tion. Thefindingsfromeachofthesecategoriesarebeyond the scope of this paper and are notpresented.Table 1. Cycle and hours of failures by dateDate of failure Time (hrs) CyclesNov 2003 1297.7 9.37E+08Feb 2004 1347.0 9.72E+08May 2004 1577.2 1.14E+09May
23、 2004 1705.7 1.23E+09Aug 2004 1738.6 1.26E+09Sep 2004 1687.2 1.22E+09Oct 2004 1214.0 8.76E+08Apr 2005 1253.9 9.05E+08Figure 2. Probability of failure vs. spare drive gear life3Photos of sample post failures of the pinion andspare drive gear are shown in Figures 3 and 4.These photos are typical of al
24、l the failures that oc-curred. A fatigue origin in the root radius area isshown in Figure 5 and thedetached teethcollectedpost failure are shown in Figure 6.Thecasehardness,casedepth,andcorehardnessweremeasuredineachof thefailedgears. Samplefindings are listed in Tables 2. The microstructure,chemist
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA07FTM112007HELICOPTERACCESSORYGEARFAILUREANALYSISINVOLVINGWEARANDBENDINGFATIGUE 齿轮 弯曲 疲劳 直升机 辅助 故障

链接地址:http://www.mydoc123.com/p-422048.html