AGMA 07FTM03-2007 Material Integrity in Molded Plastic Gears and its Dependence on Molding Practices《模造塑料齿轮的材料完整性和其与建模规范的相关性》.pdf
《AGMA 07FTM03-2007 Material Integrity in Molded Plastic Gears and its Dependence on Molding Practices《模造塑料齿轮的材料完整性和其与建模规范的相关性》.pdf》由会员分享,可在线阅读,更多相关《AGMA 07FTM03-2007 Material Integrity in Molded Plastic Gears and its Dependence on Molding Practices《模造塑料齿轮的材料完整性和其与建模规范的相关性》.pdf(13页珍藏版)》请在麦多课文档分享上搜索。
1、07FTM03Material Integrity in Molded Plastic Gears and itsDependence on Molding Practicesby: T. Vale, ABA-PGT, Inc.TECHNICAL PAPERAmerican Gear Manufacturers AssociationMaterial Integrity in Molded Plastic Gears and itsDependence on Molding PracticesTim Vale, ABA-PGT, Inc.The statements and opinions
2、contained herein are those of the author and should not be construed as anofficial action or opinion of the American Gear Manufacturers Association.AbstractThe quality of molded plastic gears is typically judged by dimensional feature measurements only. Thispracticeoverlookspotentialdeficienciesinth
3、eplasticinjectionmoldingprocessanditseffectontheintegrityof the plastic material. These deeper issues are often not given proper consideration usually until a relatedgear failure demands its study and evaluation. This paper identifies some of these oversights in the moldingprocess,theresultanteffect
4、ontheplasticmaterialanddiscussestheirlikelyeffectonshortandlongtermgearperformance.Copyright 2007American Gear Manufacturers Association500 Montgomery Street, Suite 350Alexandria, Virginia, 22314October, 2007ISBN: 978-1-55589-907-31Material Integrity in Molded Plastic Gears and its Dependenceon Mold
5、ing Practicesby Tim Vale, ABA-PGT Inc., Manchester, CTIt is standard practice in the gear industry to definethe quality of a gear based on physical measure-ment of size and form. This is never more evidentthan in the AGMA gear quality ratings where mea-sured values of total composite error (TCE) and
6、toothtotootherror(TTE)are usedto neatlycatego-rize and rate the quality of a gear. Beyond that, agreat deal of effort might also be placed on usingmore advanced metrology equipment to gathermore and more information about the size and formof the gear. This could include using elemental in-spection t
7、o get detailed information about the invo-lute and lead of the gear, using optical or a coordi-nate measuring machine to define the form of theinner diameter (ID), the flatness of thepart, thepro-fileofother featureson thegear orusing aprofilom-eter or other techniqueto quantifythe surfacefinishof t
8、he gear teeth. This is all good information tohave about your gear. In machined metal or plasticgears, if you havestarted witha qualitypiece ofrawmaterial, you can be confident that if physical mea-surements are repeatable and within specification,your gear supplier has done a fine job of supplyingy
9、ou a quality gear. With molded plastic gears, thispractice of relying on physical measurements asproof of quality overlooks potential deficiencies inthe injection molding process and the effect it mayhave on the integrity of the plastic material.Thescopeofthispaperistospotlightthesemoldingdeficienci
10、es and to discuss the hidden effects theycan have on the end properties of your plastic gear.There is a lot of published data available on thephysical properties of every type and grade of plas-tic imaginable. What isless availableand oftendis-regarded by both end users and molders of plasticgears i
11、s information on just how these publishedproperties are affected by processing conditionsduring injection molding. When published data iscompiledthereisacertainamountofcarethatgoesintoassuringthattestspecimenshavebeenmoldedusing optimum molding conditions which will in turnyieldthebestphysicalproper
12、ties. Optimumproper-ties of the plastic material cannot be achieved with-outoptimumprocessingconditions. Properpartde-signplaysamajorroleingettingthemostoutofyourplastic material, but with all things equal, if propercare is not taken during molding, all of the up frontanalysis done by a gear designe
13、r can quickly be-comemeaningless. Inadditiontoreducingphysicalproperties, poor molding will also create the condi-tionsforfailuremodesthatcouldnotbepredictedoraccounted for by even the most prudent ofdesigners.It is also important to note here that there is no wayaround the fact that a high quality
14、molded plasticgear starts with the design and construction of ahigh quality plastic gear mold. This mold shall al-ways have proper cooling channels, venting, prop-erlysized gatesand runners,sufficient coring,suffi-cient ejection capabilities, quality mold surfacefinish, precision fits and tolerances
15、, concentricitybetween mold components and proper steel selec-tion. This paper will not focus on why those thingsare important or how they are achieved. Instead itwill be assumed that a very sound mold with all ofthese considerations has been produced and is be-ing used. This paper will describe the
16、 things thatcan go wrong regardless of the mold and part de-sign if the gear molder is not disciplined and com-mitted to molding a highquality gearfrom theinsideout.Crystallinity and shrinkageWhenstudyingtherelationshipbetweenprocessingand end properties of a molded gear, the two mostbasic fundament
17、als that need to be understood arethat of crystallinity and shrinkage. For purposes ofthis paper, it is important to have a basic under-standing of these for three reasons: 1) The amountofcrystallinityina semi-crystallinepolymerhassig-nificant impact on the end properties of the plastic.2) Improperl
18、y predicted shrinkage is often a keydriver behind why a molder would choose to violategeneral good molding practice in an effort to get apart that meets the physical size requirements spe-cifiedonthepartdrawing. 3)Shrinkageandcrystal-2linityareboth highlydependent onthe processcon-ditions ultimately
19、 controlled by the molder.Most plastics fall neatly into one of two categories:amorphousorsemi-crystalline. Allplastics,regard-less of their level of crystallinity are comprised ofmany polymer chains. With an amorphous materi-al,thefulllengthofallthepolymerchainsremainsina somewhat random state befo
20、re, during, and afterheatingthematerialtotherequiredprocessingtem-perature. The difference in the polymer at low tem-perature vs high temperature is that at higher tem-perature there is more space between the polymerchainsallowingthemto movemore freely. SeeFig-ure 1. This increased free volume and h
21、eat energyis what eventually allows the plastic to flow and beinjection molded. With a semi-crystalline material,you will find these same amorphous (random)bunches of polymer chains. However, in additionyou will also find areas of tightly packed, regularlyshaped crystalline structures called spherul
22、ites.These spherulites are made up of many sections ofpolymer chains called lamellae that have folded upupon themselves and are held tightly together dueto intermolecular forces acting between the foldedsections of polymer chain. See Figure 1.This tight packing and intermolecular forces arewhat give
23、s the semi-crystalline plastic (such asacetal or nylon) the properties that are desirable forgear applications. These include friction and wearproperties, chemical resistance, and strength.Heating of a semi-crystalline material through itsmelt temperature effectively melts any crystallinestructureth
24、atmayhaveexistedintheplasticpelletsbeforeprocessingcausingthepolymerchains togobacktoawidelyspacedrandomstateverysimilartoan amorphous material at its processing tempera-ture. It is upon cooling of the material back throughits crystallization temperature that crystalline struc-tures are formed once
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA07FTM032007MATERIALINTEGRITYINMOLDEDPLASTICGEARSANDITSDEPENDENCEONMOLDINGPRACTICES 塑料 齿轮 材料 完整性 建模

链接地址:http://www.mydoc123.com/p-422040.html