数学建模-工厂最优生产计划模型.doc
《数学建模-工厂最优生产计划模型.doc》由会员分享,可在线阅读,更多相关《数学建模-工厂最优生产计划模型.doc(6页珍藏版)》请在麦多课文档分享上搜索。
1、 数学建模与数学实验 课程设计报告 学 院 数理学院 专 业 数学与应用数学 班 级 学 号 学生姓名 指导教师 2015 年 6 月 工厂最优生产计划 模型 【摘要】 本文针对工厂利用两种原料生产三种商品制定最优生产计划的问题,建立优化问题的线性规划模型。在求解中得到了在不同生产计划下收益最优化的各产品的产量安排策略、最大收益,以及最优化生产计划的灵敏度分析。 对于问题一,通过合理的假设,首先根据题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函 数 MAX。由题目中所得,工厂原料及价格的约束条件下运用 lingo 软件算出最优生产条件下最大收益为 1920 元,其次是不同产品的产
2、量。 对于问题二,灵敏度分析是研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。对产品结构优化制定及调整提供了有效的帮助。根据问题一所给的数据,运用 lingo软件做灵敏度分析。 关键词:最优化 线性规划 灵敏度分析 LINGO 一、问题重述 某工厂利用两种原料甲、乙生产 A1、 A2、 A3 三种产品。如果每月可供应的原料 数量(单位: t),每万件产品所需各种原料的数量及每万件产品的价格如下表所示: ( 1) 试制定每月和最优生产计划,使得总收益最大; ( 2) 对求得的最优生产计划进行灵敏度分析。 二、模型假设 ( 1) 在产品加工时不考虑排队等待加工的问题。 ( 2
3、) 假设工厂的原材料足够多,不会出现原材料断货的情况。 ( 3) 忽略生产设备对产品加工的影响。 ( 4) 假设工厂的原材料得到 充分利用,无原材料浪费的现象。 三、符号说明 Xij( i=1,2,; j=1,2,3;)表示两种原料分别生产出产品的数量(万件); Max为最大总收益; A1, A2, A3为三种产品。 四、模型分析 问题一分析:对于问题一的目标是制定每月和最优生产计划,求其最大生产效益。由题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。由题目中所得,工厂原料工厂原料及价格的约束,列出约束条件。 问题二分析:研究当目标函数的费用系数和约束右端项在什么范围变化
4、时,最优基保持不变。通过软件数据进行分析。 五、模 型建立与求解 问题一的求解: 建立模型: 题目的目标是寻求总利益最大化,而利润为两种原料生产的六种产品所获得的利润之和 。 设 Xij( i=1,2,; j=1,2,3;)表示两种原料分别生产出产品的数量(万件) 则目标函数 :max=12(x11+x21) +5(x12+x22)+4(x13+x23) 原料 每万件产品所需原料( t) 每月原料供应量( t) A1 A2 A3 甲 4 3 1 180 乙 2 6 3 200 价格(万元 /万件) 12 5 4 约束条件: 1)原料供应: 4x11+3x12+x13=0 所以模型为: max=
5、12(x11+x21) +5(x12+x22)+4(x13+x23) S.t 2 00xx6x21 80xx34x232221131211 0x ij(i=1,2;j=1,2,3且为整数 ) 模型求解: model: max=12*x11+12*x21+5*x12+5*x22+4*x13+4*x23; 4*x11+3*x12+x13=180; 2*x21+6*x22+3*x23=200; End 计算结果 : Global optimal solution found. Objective value: 1920.000 Infeasibilities: 0.000000 Total solv
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 工厂 最优 生产 计划 模型 DOC
