2011年初中毕业升学考试(浙江金华卷)数学.doc
《2011年初中毕业升学考试(浙江金华卷)数学.doc》由会员分享,可在线阅读,更多相关《2011年初中毕业升学考试(浙江金华卷)数学.doc(25页珍藏版)》请在麦多课文档分享上搜索。
1、2011年初中毕业升学考试(浙江金华卷)数学 选择题 某工厂为了选拔 1名车工参加直径为 5精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的 5个零件,现测得的结果如下表,平均数依次为 、,方差依次为 、 ,则下列关系中完全正确的是 ( ) A , B , C , D , 答案: C 考点:方差;算术平均数 分析:先计算出平均数后,再根据方差的计算公式计算,再比较 解:甲的平均数 =( 5.05+5.02+5+4.96+4.97) 5=5, 乙的平均数 =( 5+5.01+5+4.97+5.02) 5=5, 故有 , S2 甲 = ( 5.05-5) 2+( 5.02-5) 2+( 5-5
2、) 2+( 4.96-5) 2+( 4.97-5) 2= , S2 乙 = ( 5-5) 2+( 5.01-5) 2+( 5-5) 2+( 4.97-5) 2+( 5.02-5) 2= ; 故有 S2 甲 S2 乙 故选 C 如图,在平面直角坐标系中,过格点 A, B, C作一圆弧,点 B与下列格点的连线中,能够与该圆弧相切的是( ) A点( 0, 3) B点( 2, 3) C点( 5, 1) D点( 6, 1) 答案: C 如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直 .如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( ) A 600m B
3、 500m C 400m D 300m 答案: B 不等式组 的解在数轴上表示为( ) 答案: C 学校为了解七年级学生参加课外兴趣 小组活动情况,随机调查了 40 名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ) A 0.1 B 0.15 C 0.25 D 0.3 答案: D 如图,把一块含有 45角的直角三角板的两个顶点放在直尺的对边上 .如果 1=20o,那么 2的度数是( ) A 30o B 25o C 20o D 15o 答案: B 有四包真空小包装火腿,每包以标准克数( 450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其
4、中表示实际克数最接近标准克数的是( ) A 2 B 3 C 3 D 4 答案: A 计算 的结果为( ) A B C -1 D 2 答案: C 下列各式能用完全平方公式进行分解因式的是( ) A x2+1 B x2+2x-1 C x2 x 1 D x2 4x 4 答案: D 如图是六个棱长为 1的立方块组成的一个几何体,其俯视图的面积是( ) A 6 B 5 C 4 D 3 答案: B 下列分数中,能化为有限小数的是( ) A ; B ; C ; D 答案: B 如图,在 Rt ABC中, AB=CB, BO AC,把 ABC折叠,使 AB落在AC 上,点 B 与 AC 上的点 E重合,展开后
5、,折痕 AD 交 BO 于点 F,连结 DE、EF.下列结论: tan ADB=2 图中有 4对全等三角形 若将 DEF沿 EF折叠,则点 D不一定落在 AC 上 BD=BF S 四边形 DFOE=S AOF,上述结论中正确的个数是( ) A 1个 B 2个 C 3个 D 4个 答案: C 分式方程 有增根,则 m的值为( ) A 0和 3 B 1 C 1和 -2 D 3 答案: D 如图, A、 B、 C、 D是 O 上的四个点, AB=AC, AD交 BC 于点 E,AE=3, ED=4,则 AB的长为 ( ) A 3 B 2 C D 3 答案: C 下列各组数中,互为相反数的是( ) A
6、 2和 -2 B -2和C -2和 D 和 2 答案: A 已知二次函数 y=ax2+bx+c(a0)的图象如图所示,现有下列结论: b2-4ac 0 a 0 b 0 c 0 9a+3b+c 0,则其中结论正确的个数是( ) A 2个 B 3个 C 4个 D 5个 答案: B 考点:二次函数图象与系数的关系 分析:由抛物线的开口方向判断 a与 0的关系,由抛物线与 y轴的交点判断 c与 0的关系,然后根据抛物线与 x轴交点及 x=1时二次函数的值的情况进行推理,进而对所得结论进行判断 解: 根据图示知,二次函数与 x轴有两个交点,所以 =b2-4ac 0;故 正确; 根据图示知,该函数图象的开
7、口向上, a 0; 故 正确; 又对称轴 x=- =1, 0, b 0; 故本选项错误; 该函数图象交于 y轴的负半轴, c 0; 故本选项错误; 根据抛物线的对称轴方程可知:( -1, 0)关于对称轴的对称点是( 3, 0); 当 x=-1时, y 0,所以当 x=3时,也有 y 0,即 9a+3b+c 0;故 正确 所以 三项正确 故选 B 填空题 函数 y= 中,自变量 x的取值范围是 . 答案: x-2且 x3 已知三角形的两边长为 4, 8,则第三边的长度可以是 (写出一个即可 ). 答案:答案:不惟一,在 4 x 12之间的数都可 如图,将一块直角三角板 OAB放在平面直角坐标系中
8、, B(2, 0), AOB=60,点 A在第一象限,过点 A的双曲线为 .在 x轴上取一点 P,过点 P作直线 OA的垂线 l,以直线 l为对称轴,线段 OB经轴对称变换后的像是 OB. ( 1)当点 O与点 A重合时,点 P的坐标是 ; ( 2)设 P(t, 0),当 OB与双曲 线有交点时, t的取值范围是 . 答案:( 1)( 4, 0);( 2) 4t 或 t-4(各 2分) 如图 ,在 ABCD中, AB=3, AD=4, ABC=60,过 BC 的中点 E作EF AB,垂足为点 F,与 DC 的延长线相交于点 H,则 DEF的面积是 .答案: 从 -2, -1, 2这三个数中任取
9、两个不同的数作为点的坐标,该点在第四象限的概率是 . 答案: 在中国旅游日( 5月 19日),我市旅游部门对 2011年第一季度游客在金华的旅游时间作抽样调查,统计如下: 若将统计情况制成扇形统计图,则表示旅游时间为 “2 3天 ”的扇形圆心角的度数为 . 答案: “x与 y的差 ”用代数式可以表示为 . 答案: x-y 考点:列代数式 分析:用减号连接 x与 y即可 解:由题意得 x为被减数, y为减数, 可得代数式 x-y 故答案:为: x-y 点评:考查列代数式;根据关键词得到运算关系是解决本题的关键 将一个半径为 6,母线长为 15的圆锥形纸筒沿一条母线剪开并展平,所得 的侧面展开图的
10、圆心角是 度 . 答案: 如图,点 B、 F、 C、 E在同一条直线上,点 A、 D在直线 BE 的两侧,AB DE, BF=CE,请添加一个适当的条件: ,使得 AC=DF答案: AB=DE或 A= D等 因式分解: -3x2+6xy-3y2= . 答案: -3(x-y)2 考点:提公因式法与公式法的综合运用 分析:根据分解因式的方法,首负先提负,放进括号里的各项要变号,再提取公因式 3,括号里的剩下 3项,考虑完全平方公式分解 解: -3x2+6xy-3y2=-( 3x2-6xy+3y2) =-3( x2-2xy+y2) =-3( x-y) 2, 故答案:为: -3( x-y) 2 中国象
11、棋红方棋子按兵种不同分布如下: 1个帅, 5个兵, “士象、马、车、炮 ”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率是 答案: 一元二次方程 2-4 -7=0的解为 . 答案: 1=2+ , 2=2- 某班级为筹备运动会,准备用 365元购买两种运动服,其中甲种运动服 20元 /套,乙种运动服 35元 /套,在钱都用尽的条件下,有 种购买方案 . 答案: 已知三角形相邻两边长分别为 20和 30,第三边上的高为 10,则此三角 形的面积为 2. 答案:( 100 +50 )或( 100 -50 )(答案:不全或含错解,本题不得分) 如图, ABC是边长为 1的等边三角形
12、 .取 BC 边中点 E,作 ED AB,EF AC, 得到四边形 EDAF,它的面积记作 S1;取 BE 中点 E1,作 E1D1 FB, E1F1 EF,得到四边 形 E1D1FF1,它的面积记作 S2.照此规律作下去,则 S2011= . 答案: (表示为 亦可) 2010年 10月 31日,上海世博会闭幕 .累计参观者突破 7308万人次,创造了世 博会历史上新的纪录 .用科学记数法表示为 人次 . (结果保留两个有效数字) 答案: .7.3107 计算题 (本小题满分 5分) 先化简,再求值:( 1- ) ,其中 =sin60. 答案:(本小题满分 5分) 解:原式 =( - ) =
13、 -= +1 - (3分 ) 把 =sin60= 代入 - (1分 ) 原式 = = -( 1分) (本题 6分 ) 计算 : . 答案: (本题 6分 ) = (写对一个 2分,两个 3分,三个 4分,四个 5分) = . 1 分 解答题 答案: (本题 6分 ) 由 2x-1=3得 x=2, 2 分 又 = = , 2 分 当 x=2时,原式 =14. 2 分 (本题 6分 )生活经验表明,靠墙摆放的梯子,当 5070时( 为梯子与地面所成的角),能够使人安全攀爬 . 现在有一长为 6米的梯子 AB, 试求能够使人安全攀爬时,梯子的顶端能达到的最大高度 AC.(结果保留两个有效数字,sin
14、700.94, sin500.77, cos700.34, cos500.64) 答案: (本题 6分 ) 当 =70时,梯子顶端达到最大高度 , 1 分 sin= , 2 分 AC= sin706=0.946=5.64 2 分 5.6(米 ) 答:人安全攀爬梯子时,梯子的顶端达到的最大高度约 5.6米 1 分 (本题 8分 )王大伯几年前承包了甲、乙两片荒山,各栽 100棵杨梅树,成活98%现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了 4棵树上的杨梅,每棵的产量如折线统计图所示 . ( 1)分别计算甲、乙两山样本的平均数,并估 算出甲、乙两山杨梅的产量总和; (
15、2)试 通过计算说明,哪个山上的杨梅产量较稳定?答案: (本题 8分 ) ( 1) (千克 ), 1 分 (千克 ), 1 分 总产 量为 (千克); 2 分 ( 2) (千克 2 ), 1分 (千克 2), 1 分 . 1 分 答:乙山上的杨梅产量较稳定 1 分 (本题 8 分 )如图,射线 PG 平分 EPF, O 为射线 PG 上一点,以 O 为圆心,10为半径作 O,分别与 EPF的两边相交于 A、 B和 C、 D,连结 OA,此时有 OA/PE ( 1)求证: AP=AO; ( 2)若 tan OPB= ,求弦 AB的长; ( 3)若以图中已标明的点(即 P、 A、 B、 C、 D、
16、 O)构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 . 答案:(本题 8分) ( 1) PG平分 EPF, DPO= BPO, OA/PE, DPO= POA, BPO= POA, PA=OA; 2 分 ( 2)过点 O 作 OH AB于点 H,则 AH=HB= AB, 1 分 tan OPB= , PH=2OH, 1 分 设 OH= ,则 PH=2 , 由( 1)可知 PA=OA= 10 , AH=PH-PA=2 -10, , , 1 分 解得 (不合题意,舍去), , AH=6, AB=2AH=12; 1 分 ( 3) P、 A、 O、 C; A、 B、 D、 C
17、或 P、 A、 O、 D或 P、 C、 O、 B.2 分 (写对 1个、 2个、 3个得 1分,写对 4个得 2分 ) (本题 10分 )某班师生组织植树活动,上午 8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程 s与时间 t之间的图象 .请回答下列问题: ( 1)求师生何时回到学校? ( 2)如果运送树苗的三轮车比师生迟半小时出发,与师生同 路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路 程 s与时间 t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程; ( 3)如果师生骑自行车上午 8时出发,到植树地点后,植树需 2小时,要求14时前返
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 年初 毕业 升学考试 浙江 金华 数学
