2019年高考数学二轮复习专题五立体几何5.3.2空间中的垂直、夹角及几何体的体积课件文.ppt
《2019年高考数学二轮复习专题五立体几何5.3.2空间中的垂直、夹角及几何体的体积课件文.ppt》由会员分享,可在线阅读,更多相关《2019年高考数学二轮复习专题五立体几何5.3.2空间中的垂直、夹角及几何体的体积课件文.ppt(25页珍藏版)》请在麦多课文档分享上搜索。
1、5.3.2 空间中的垂直、夹角及几何体的体积,-2-,垂直关系的证明 例1 (2018全国,文19)如图,在三棱锥P-ABC中,AB=BC=2 , PA=PB=PC=AC=4,O为AC的中点. (1)证明:PO平面ABC; (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.,-3-,-4-,解题心得从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.,-5-,对点训练1(2018全国,文18) 如图,在平行四边形ABCM中, AB=AC=3,ACM=90.以AC为折痕将ACM折起,使点M到达点D的
2、位置,且ABDA.(1)证明:平面ACD平面ABC; (2)Q为线段AD上一点,P为线段BC上一点,且 BP=DQ= DA,求三棱锥Q-ABP的体积.,-6-,(1)证明 由已知可得BAC=90,BAAC. 又BAAD,所以AB平面ACD. 又AB平面ABC, 所以平面ACD平面ABC.,-7-,平面图形的折叠问题 例2如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD, CD上,AE=CF,EF交BD于点H.将DEF沿EF折到DEF的位置.,-8-,-9-,解题心得平面图形经过翻折成为空间图形后,原有的性质有的发生变化,有的没变.一般地,在翻折后还在一个平面上的性质不发生变化,
3、不在同一个平面上的性质可能发生变化.解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.,-10-,对点训练2如图,菱形ABCD的边长为12,BAD=60,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,如图,点M,N分别是棱BC,AD的中点,且DM= .,(1)求证:OD平面ABC; (2)求三棱锥M-ABN的体积.,-11-,(1)证明 四边形ABCD是菱形, AD=DC,ODAC. 在ADC中,AD=DC=12,ADC=120,则OD=6. M是BC的中点,OD2+OM2=MD2,DOOM. O
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 二轮 复习 专题 立体几何 532 空间 中的 垂直 夹角 几何体 体积 课件 PPT
