2018年高中数学第四章定积分4.1定积分的概念课件3北师大版选修2_2.ppt
《2018年高中数学第四章定积分4.1定积分的概念课件3北师大版选修2_2.ppt》由会员分享,可在线阅读,更多相关《2018年高中数学第四章定积分4.1定积分的概念课件3北师大版选修2_2.ppt(22页珍藏版)》请在麦多课文档分享上搜索。
1、一、引进定积分概念的两个例子,第一节 定积分的概念,二、定积分的定义,三、定积分的几何意义,一、引进定积分概念的两个例子,1.曲边梯形的面积,曲边梯形:在直角坐标系下,,由闭区间a, b上的连续曲线 y = f (x) 0,,直线 x = a,x = b 与 x 轴围成的平面图形 AabB.,基于这种想法,,可以用一组平行于 y 轴的直线,把曲边梯形分割成若干个小曲边梯形,,只要分割得较细,,每个小曲边梯形很窄,,则其高 f (x) 的变化就很小.,这样,可以在每个小曲边梯形上作一个与它同底,,底上某点函数值为高的矩形,,曲线 y = f (x) 是连续的,,所以,当点 x 在区间 a, b
2、上某处变化很小时,,则相应的高 f (x) 也就变化不大.,显然,分割越细,,近似程度就越高,,当无限细分时,,则所有小矩形面积之和的极限就是曲边梯形面积的精确值.,用小矩形的面积近似代替小曲边梯形的面积,,进而用所有小矩形面积之和近似代替整个曲边梯形面积.,(1) 分割,在区间a, b内任意插入 n 1 个分点:,a = x0 x1 x2 xi-1 xi xn-1 xn = b,,把区间a, b分成 n 个小区间:,x0, x1,x1, x2, ,xi-1, xi , ,xn-1, xn.,这些小区间的长度分别记为,xi = xi xi -1 (i = 1, 2, , n).,过每一分点作平
3、行于 y 轴的直线,,它们把曲边梯形分成 n 个小曲边梯形.,根据以上分析,可按下面四步计算曲边梯形面积.,a = x0,x1,xi-1,xn= b,xi,(2) 近似代替,在每个小区间 xi-1, xi(i = 1, 2, , n)上取一点 xi (xi-1 xi xi),以 f(xi)为高,xi 为底作小矩形,,用小矩形面积 f (xi)xi 近似代替相应的小曲边梯形面积 Ai ,,即,Ai f (xi) xi (i = 1, 2, , n) .,x1,x2,xi,xn,(4) 取极限,当分点个数 n 无限增加,,即,(3) 求和,把 n 个小矩形面积加起来,,它就是曲边梯形面积的近似值,
4、,即,且小区间长度的最大值 (即 = maxxi)趋近于 0 时,,上述和式的极限就是曲边梯形面积的精确值,,2.变速直线运动的路程,设一物体作直线运动,,已知速度 v = v(t) 是时间 t 的连续函数,,求在时间间隔T1,T2上物体所经过的路程 s .,(1) 分割,在时间间隔 T1,T2内任意插入 n - 1 个分点:,T1 = t0 t1 t2 ti-1 ti tn-1 tn = T2 ,,把T1,T2分成 n 个小区间:,t0, t1,t1, t2, ,ti-1, ti , ,tn-1, tn.,这些小区间的长度分别为:,ti = ti ti 1 (i = 1, 2, , n) .
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年高 数学 第四 积分 41 概念 课件 北师大 选修 _2PPT
