版选修4_5.ppt
《版选修4_5.ppt》由会员分享,可在线阅读,更多相关《版选修4_5.ppt(15页珍藏版)》请在麦多课文档分享上搜索。
1、本讲整合,答案:三维形式的柯西不等式 一般形式的柯西不等式 乱序和 顺序和 向量形式 三角不等式,专题一,专题二,专题一:柯西不等式的应用 1.柯西不等式的一般形式为 (a1b1+a2b2+anbn)2,其中ai,biR(i=1,2,n).该不等式的形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式的证明问题迎刃而解,也可以用来解决最值问题. 2.利用柯西不等式证明其他不等式的关键是构造两组数,并向着柯西不等式的形式进行转化,运用时要注意体会拼凑和变形技巧. 3.利用柯西不等式证明不等式,特别是求最值时要注意等号是否成立.,专题一,专题二,专题一,专题二,变式训练1 已
2、知实数a,b,c满足a+2b+c=1,a2+b2+c2=1, 求证 c1. 证明:因为a+2b+c=1,a2+b2+c2=1, 所以a+2b=1-c,a2+b2=1-c2. 由柯西不等式可得(12+22)(a2+b2)(a+2b)2, 即5(1-c2)(1-c)2,专题一,专题二,例2设a,b,c为正实数,且a+2b+3c=13,专题一,专题二,变式训练2 求实数x,y的值,使(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值. 解:由柯西不等式,得 (12+22+12)(y-1)2+(3-x-y)2+(2x+y-6)2 1(y-1)+2(3-x-y)+1(2x+y-6)2=1,专题
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 _5PPT
