版选修2_3.ppt
《版选修2_3.ppt》由会员分享,可在线阅读,更多相关《版选修2_3.ppt(35页珍藏版)》请在麦多课文档分享上搜索。
1、第2课时 两个计数原理的综合应用,第一章 1.1 分类加法计数原理与分步乘法计数原理,学习目标 1.进一步理解分类加法计数原理和分步乘法计数原理的区别. 2.会正确应用这两个计数原理计数.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 两个计数原理的区别与联系,解决较为复杂的计数问题,一般要将两个计数原理综合应用.使用时要做到目的明确,层次分明,先后有序,还需特别注意以下两点: (1)合理分类,准确分步:处理计数问题,应扣紧两个原理,根据具体问题首先弄清楚是“分类”还是“分步”,要搞清楚“分类”或者“分步”的具体标准.分类时需要满足两 个条件:类与类之间要互斥(保证不重复);总数
2、要完备(保证不遗漏),也就是要确定一个合理的分类标准.分步时应按事件发生的连贯过程进行分析,必须做到步与步之间互相独立,互不干扰,并确保连续性.,知识点二 两个计数原理的应用,(2)特殊优先,一般在后:解含有特殊元素、特殊位置的计数问题,一般应优先安排特殊元素,优先确定特殊位置,再考虑其他元素与其他位置,体现出解题过程中的主次思想.,题型探究,例1 用0,1,2,3,4五个数字, (1)可以排成多少个三位数字的电话号码?,解 三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有55553125(种).,类型一 组数问题,解答,(2)可以排成多少个三位数?,解 三位数的首
3、位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有455100(种).,(3)可以排成多少个能被2整除的无重复数字的三位数?,解 被2整除的数即偶数,末位数字可取0,2,4, 因此,可以分两类,一类是末位数字是0,则有4312(种)排法; 一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位, 所以有3种排法,十位有3种排法,因此有23318(种)排法. 因而有121830(种)排法.即可以排成30个能被2整除的无重复数字的三位数.,解答,引申探究 由本例中的五个数字可组成多少个无重复数字的四位奇数?,解 完成“组成无重复
4、数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法; 第二步定首位,把1,2,3,4中除去用过的一个剩下的3个中任取一个,有3种方法; 第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有233236(个).,解答,反思与感悟 对于组数问题,应掌握以下原则: (1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解. (2)要注意数字“0”不能排在两位数字或两位数字以上的数的最
5、高位.,跟踪训练1 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 A.24 B.18 C.12 D.6,解析 由于题目要求是奇数,那么对于此三位数可以分成两种情况;奇偶奇,偶奇奇. 如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),最后百位(2种情况),共12种; 如果是第二种情况偶奇奇:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共有12618(种)情况.故选B.,答案,解析,例2 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则
6、不同的分配方案有 A.16种 B.18种 C.37种 D.48种,类型二 选(抽)取与分配问题,答案,解析,解析 方法一 (直接法) 以甲工厂分配班级情况进行分类,共分为三类:第一类,三个班级都去甲工厂,此时分配方案只有1种情况;第二类,有两个班级去甲工厂,剩下的班级去另外三个工厂,其分配方案共有339(种);第三类,有一个班级去甲工厂,另外两个班级去其他三个工厂,其分配方案共有33327(种). 综上所述,不同的分配方案有192737(种). 方法二 (间接法) 先计算3个班级自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即44433337(种)方案.,反思与感悟 解决抽取(分配)问题的
7、方法 (1)当涉及对象数目不大时,一般选用列举法、树状图法、框图法或者图表法. (2)当涉及对象数目很大时,一般有两种方法:直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.,跟踪训练2 3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?,解 (以小球为研究对象)分三步来完成: 第一步:放第一个小球有5种选择; 第二步:放第二个小球有4种选择; 第三步:放第三个小球有3种选择, 由分步乘法计数原理得,总方法数N54360
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 _3PPT
