(浙江专用)2020版高考数学新增分大一轮复习第八章立体几何与空间向量8.1空间几何体的结构、三视图和直观图课件.pptx
《(浙江专用)2020版高考数学新增分大一轮复习第八章立体几何与空间向量8.1空间几何体的结构、三视图和直观图课件.pptx》由会员分享,可在线阅读,更多相关《(浙江专用)2020版高考数学新增分大一轮复习第八章立体几何与空间向量8.1空间几何体的结构、三视图和直观图课件.pptx(55页珍藏版)》请在麦多课文档分享上搜索。
1、8.1 空间几何体的结构、三视图和直观图,第八章 立体几何与空间向量,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,知识梳理,1.多面体的结构特征,ZHISHISHULI,平行且,平行四边形,平行,平行且相等,一点,平行四边形,截面,底面,一点,多边形,三角形,三角形,梯形,全等,2.旋转体的结构特征,一点,矩形,垂直,一点,等腰三角形,等腰梯形,圆,矩形,扇形,扇环,3.三视图与直观图,垂直,45或135,平行于坐标轴,不变,原来的一半,1.底面是正多边形的棱柱是正棱柱吗,为什么?,【概念方法微思考】,提示
2、不一定.因为底面是正多边形的直棱柱才是正棱柱.,2.什么是三视图?怎样画三视图?,提示 光线自物体的正前方投射所得的正投影称为正视图,自左向右的正投影称为侧视图,自上向下的正投影称为俯视图,几何体的正视图、侧视图和俯视图统称为三视图.画几何体的三视图的要求是正视图与俯视图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等.,题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“”或“”) (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.( )
3、(4)正方体、球、圆锥各自的三视图中,三视图均相同.( ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( ) (6)菱形的直观图仍是菱形.( ),基础自测,JICHUZICE,1,2,3,4,5,6,7,题组二 教材改编 2.P19T2下列说法正确的是 A.相等的角在直观图中仍然相等 B.相等的线段在直观图中仍然相等 C.正方形的直观图是正方形 D.若两条线段平行,则在直观图中对应的两条线段仍然平行,1,2,3,4,5,6,解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变.,7,3.P8T1在如图所示的几何体中,是棱柱的为_.(填写所有正确的序号),1,
4、2,3,4,5,6,7,题组三 易错自纠 4.某空间几何体的正视图是三角形,则该几何体不可能是 A.圆柱 B.圆锥 C.四面体 D.三棱柱,1,2,3,4,5,6,解析 由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.,7,5.如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是,1,2,3,4,5,6,解析 此几何体侧视图是从左边向右边看.故选C.,7,1,2,3,4,5,6,7,7.(2018全国)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆
5、柱侧面上,从M到N的路径中,最短路径的长度为,1,2,3,4,5,6,7,解析 先画出圆柱的直观图,根据题中的三视图可知,点M,N的位置如图所示.,圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图所示,连接MN,则图中MN即为M到N的最短路径.,1,2,3,4,5,6,7,2,题型分类 深度剖析,PART TWO,1.以下命题: 以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥; 以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台; 圆柱、圆锥、圆台的底面都是圆面; 一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为 A.0 B.1 C.2 D.3,题型一 空间
6、几何体的结构特征,自主演练,解析 由圆锥、圆台、圆柱的定义可知错误,正确. 对于命题,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,不正确.,2.给出下列四个命题: 有两个侧面是矩形的立体图形是直棱柱; 侧面都是等腰三角形的棱锥是正棱锥; 侧面都是矩形的直四棱柱是长方体; 底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱. 其中不正确的命题为_.(填序号),解析 对于,平行六面体的两个相对侧面也可能是矩形,故错; 对于,对等腰三角形的腰是否为侧棱未作说明(如图),故错; 对于,若底面不是矩形,则错; 由线面垂直的判定,可知侧棱垂直于底面,故正确. 综上,命题不正确.,
7、空间几何体概念辨析题的常用方法 (1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定. (2)反例法:通过反例对结构特征进行辨析.,题型二 简单几何体的三视图,命题点1 已知几何体识别三视图 例1 (2018全国)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是,多维探究,解析 由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.,命题点2 已知三视图,判断简单
8、几何体的形状 例2 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是 A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱,解析 由题意知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.,命题点3 已知三视图中的两个视图,判断第三个视图 例3 一个锥体的正视图和侧视图如图所示,下列选项中,不可能是该锥体的俯视图的是,解析 A,B,D选项满足三视图作法规则,C不满足三视图作法规则中的宽相等,故C不可能是该锥体的俯视图.,三视图问题的常见类型及解题策略 (1)注意观察方向,看到的部分用实线表示,不能看到的部分用虚线. (2)还原几何体.要熟悉柱、锥
9、、台、球的三视图,结合空间想象还原. (3)由部分视图画出剩余的部分视图.先猜测,还原,再判断.当然作为选择题,也可将选项逐项代入.,A. B. C. D.,跟踪训练1 (1)(2018杭州模拟)如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则PAC在该正方体各个面上的正投影可能是,解析 P点在上下底面投影落在AC或A1C1上,所以PAC在上底面或下底面的投影为,在前、后面以及左、右面的投影为.,(2)(2018宁波模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为 ,则该几何体的俯视图可以是,解析 该几何体为正方体
10、截去一部分后的四棱锥PABCD,如图所示,该几何体的俯视图为C.,题型三 空间几何体的直观图,师生共研,例4 已知等腰梯形ABCD,上底CD1,腰ADCB ,下底AB3,以下底所在直线为x轴,则由斜二测画法画出的直观图ABCD的面积为_.,解析 如图所示,作出等腰梯形ABCD的直观图.,用斜二测画法画直观图的技巧 在原图形中与轴平行的线段在直观图中与轴平行,不平行的线段先画线段的端点再连线.,跟踪训练2 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45、腰和上底长均为2的等腰梯形,则这个平面图形的面积是,解析 由已知直观图根据斜二测画法规则画出原平面图形,如图所示,,3,课时
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用 2020 高考 数学 新增 一轮 复习 第八 立体几何 空间 向量 81 几何体 结构 视图 直观图 课件 PPTX

链接地址:http://www.mydoc123.com/p-1123858.html