(课标通用)安徽省2019年中考数学总复习第一篇知识方法固基第五单元四边形第21讲矩形、菱形、正方形课件.pptx
《(课标通用)安徽省2019年中考数学总复习第一篇知识方法固基第五单元四边形第21讲矩形、菱形、正方形课件.pptx》由会员分享,可在线阅读,更多相关《(课标通用)安徽省2019年中考数学总复习第一篇知识方法固基第五单元四边形第21讲矩形、菱形、正方形课件.pptx(38页珍藏版)》请在麦多课文档分享上搜索。
1、第21讲 矩形、菱形、正方形,考点一,考点二,考点三,考点四,考点一矩形(高频),考点一,考点二,考点三,考点四,考点一,考点二,考点三,考点四,考点二菱形(高频),考点一,考点二,考点三,考点四,考点一,考点二,考点三,考点四,考点三正方形(高频),考点一,考点二,考点三,考点四,考点四平行四边形、矩形、菱形、正方形之间的关系,命题点1,命题点2,命题点3,命题点1 矩形的性质,1.(2017安徽,10,4分)如图,矩形ABCD中,AB=5,AD=3.动点P满足SPAB= S矩形ABCD.则点P到A,B两点距离之和PA+PB 的最小值为( D ),命题点1,命题点2,命题点3,解析: 设AB
2、P中AB边上的高是h.,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离. 在RtABE中,AB=5,AE=2+2=4,命题点1,命题点2,命题点3,命题点2 矩形、菱形的性质综合应用 2.(2015安徽,9,4分)如图,矩形ABCD中,AB=8,BC=4,点E在AB上,点F在CD上,点G,H在对角线AC上.若四边形EGFH是菱形,则AE的长是( C ),命题点1,命题点2,命题点3,解析 如图,连接EF交AC于点O,根据菱形性质有FEAC,OG=OH,易证OA=OC.由四边形ABCD是矩形,得B=90,根据勾股定
3、理得,命题点1,命题点2,命题点3,命题点3 正方形的性质与判定 3.(2014安徽,10,4分)如图,正方形ABCD的对角线BD长为2 ,若直线l满足: 点D到直线l的距离为 ; A,C两点到直线l的距离相等. 则符合题意的直线l的条数为( B ) A.1 B.2 C.3 D.4,解析 如图,连接AC与BD相交于O,同理,在点D的另一侧还有一条直线满足条件, 故共有2条符合题意的直线l.故选B.,考法1,考法2,考法3,考法1矩形的相关证明与计算,例1(2018合肥行知学校模拟)如图,已知ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD. (1)求证:四边形BECD是矩
4、形; (2)连接AC,若AD=4,CD=2,求AC的长. 解:(1)证明:四边形ABCD是平行四边形, ABCD,AB=CD,BE=AB,BE=CD, 四边形BECD是平行四边形. AD=BC,AD=DE,BC=DE, BECD是矩形.,考法1,考法2,考法3,(2)连接AC,CD=2, AB=BE=2. AD=4,ABD=90,考法1,考法2,考法3,方法总结1.矩形判定的一般思路 首先判定是否为平行四边形,再找直角或者对角线的关系.若角度容易求,则证明其一角为90,便可判定是矩形;若对角线容易求,则证明其对角线相等即可判定其为矩形. 2.应用矩形性质计算的一般思路 (1)根据矩形的四个角都
5、是直角,一条对角线将矩形分成两个直角三角形,用勾股定理或三角函数求线段的长. (2)矩形对角线相等且互相平分,矩形的两条对角线把矩形分成四个等腰三角形,在利用矩形性质进行相关的计算时,可利用面积法,建立等量关系.,考法1,考法2,考法3,对应练1(课本习题改编)下列命题,其中是真命题的为( D ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线互相垂直的四边形是菱形 C.对角线相等的四边形是矩形 D.一组邻边相等的矩形是正方形,考法1,考法2,考法3,对应练2(2017山东潍坊)如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD上,记为B,折痕为CE;再将C
6、D边斜向下对折,使点D落在BC上,记为D,折痕为CG,BD=2,BE= BC.则矩形纸片ABCD的面积为15 .,考法1,考法2,考法3,解析:由折叠可知BC=BC,CD=CD, 又BD=2,故设BC=x,整理,得x2-7x+10=0,解得x1=5,x2=2(不合题意,舍去),矩形纸片ABCD的面积为BCCD=53=15.,考法1,考法2,考法3,对应练3(2018甘肃白银)已知矩形ABCD中,E是AD边上一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:BGFFHC; (2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.,考法1,考法2,考法3,解:(1)点F是
7、BC边上的中点,BF=FC. 点F,G,H分别BC,BE,CE的中点, GF,FH是BEC的中位线.,BGFFHC(SSS). (2)当四边形EGFH是正方形时, BEC=90,FG=GE=EH=FH. FG,FH是BEC的中位线,BE=CE. BEC是等腰直角三角形.,考法1,考法2,考法3,考法2菱形的相关证明及计算,例2(2017江苏扬州)如图,将ABC沿着射线BC方向平移至ABC,使点A落在ACB的外角平分线CD上,连接AA.(1)判断四边形ACCA的形状,并说明理由; (2)在ABC中,B=90,AB=24,cosBAC= ,求CB的长.,考法1,考法2,考法3,解:(1)四边形AC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通用 安徽省 2019 年中 数学 复习 一篇 知识 方法 第五 单元 四边形 21 矩形 菱形 正方形 课件 PPTX

链接地址:http://www.mydoc123.com/p-1112034.html