广西2020版高考数学一轮复习第八章立体几何8.3空间点、直线、平面之间的位置关系课件文.pptx
《广西2020版高考数学一轮复习第八章立体几何8.3空间点、直线、平面之间的位置关系课件文.pptx》由会员分享,可在线阅读,更多相关《广西2020版高考数学一轮复习第八章立体几何8.3空间点、直线、平面之间的位置关系课件文.pptx(41页珍藏版)》请在麦多课文档分享上搜索。
1、8.3 空间点、直线、平面 之间的位置关系,-2-,知识梳理,双基自测,2,3,4,1,6,5,7,1.平面的基本性质 公理1:如果一条直线上的 在一个平面内,那么这条直线在此平面内. 公理2:过 的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有过该点的公共直线.,两点,不在一条直线上,一条,-3-,知识梳理,双基自测,2,3,4,1,6,5,7,2.直线与直线的位置关系,平行,相交,任何,(2)异面直线所成的角 定义:设a,b是两条异面直线,经过空间任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角).,-4-,知识
2、梳理,双基自测,2,3,4,1,6,5,7,3.公理4 平行于 的两条直线互相平行.,同一条直线,-5-,知识梳理,双基自测,2,3,4,1,6,5,7,4.定理 空间中如果两个角的两边分别对应平行,那么这两个角 .,相等或互补,-6-,知识梳理,双基自测,2,3,4,1,6,5,7,5.直线与平面的位置关系 直线与平面的位置关系有 、 、 三种情况.,平行,相交,在平面内,-7-,知识梳理,双基自测,2,3,4,1,6,5,7,6.平面与平面的位置关系 平面与平面的位置关系有 、 两种情况.,平行,相交,-8-,知识梳理,双基自测,2,3,4,1,6,5,7,7.常用结论 (1)唯一性定理
3、过直线外一点有且只有一条直线与已知直线平行. 过直线外一点有且只有一个平面与已知直线垂直. 过平面外一点有且只有一个平面与已知平面平行. 过平面外一点有且只有一条直线与已知平面垂直. (2)异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线.,-9-,知识梳理,双基自测,2,3,4,1,6,5,7,(3)确定平面的三个推论 推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. (4)异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一
4、个平面,因此异面直线既不平行,也不相交.,2,-10-,知识梳理,双基自测,3,4,1,5,1.下列结论正确的打“”,错误的打“”. (1)两个不重合的平面只能把空间分成四个部分.( ) (2)两个平面,有一个公共点A,就说,相交于A点,记作=A. ( ) (3)已知a,b是异面直线,直线c平行于直线a,那么c与b不可能是平行直线.( ) (4)如果两个不重合的平面,有一条公共直线a,那么就说平面,相交,并记作=a.( ) (5)若a,b是两条直线,是两个平面,且a,b,则a,b是异面直线.( ),答案,-11-,知识梳理,双基自测,2,3,4,1,5,2.如图,在正方体ABCD-A1B1C1
5、D1中,E,F分别为BC,BB1的中点,则下列直线与直线EF相交的是( ) A.直线AA1 B.直线A1B1 C.直线A1D1 D.直线B1C1,答案,解析,-12-,知识梳理,双基自测,2,3,4,1,5,3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( ),答案,解析,-13-,知识梳理,双基自测,2,3,4,1,5,答案,4.设P表示一个点,a,b表示两条直线,表示两个平面,给出下列四个命题,其中正确的命题是 .(填序号) Pa,Pa;ab=P,ba;ab,a,Pb,Pb;=b,P,PPb.,-14-,
6、知识梳理,双基自测,2,3,4,1,5,5.(教材探究改编P46)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件 时,四边形EFGH为菱形; (2)当AC,BD满足条件 时,四边形EFGH是正方形.,答案,解析,-15-,知识梳理,双基自测,2,3,4,1,5,自测点评 1.做有关平面基本性质的判断题时,要抓住关键词,如“有且只有”“只能”“最多”等. 2.两个不重合的平面只要有一个公共点,那么两个平面一定相交且得到的是一条直线. 3.异面直线是指不同在任何一个平面内,没有公共点的直线.不能错误地理解为不在某一个平面内的两条直线就是
7、异面直线.,-16-,考点1,考点2,考点3,例1如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点,求证: (1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点. 思考如何利用平面的基本性质证明点共线和线共点?,-17-,考点1,考点2,考点3,证明 (1)如图,连接EF,CD1,A1B. E,F分别是AB,AA1的中点, EFA1B. 又A1BCD1, EFCD1,E,C,D1,F四点共面. (2)EFCD1,EFCD1, CE与D1F必相交,设交点为P, 则由PCE,CE平面ABCD, 得P平面ABCD. 同理P平面ADD1A1.又平面ABCD平面A
8、DD1A1=DA, P直线DA. CE,D1F,DA三线共点.,-18-,考点1,考点2,考点3,解题心得1.点线共面问题的证明方法: (1)纳入平面法:先确定一个平面,再证有关点、线在此平面内; (2)辅助平面法:先证有关点、线确定平面,再证其余点、线确定平面,最后证明平面,重合. 2.证明多线共点问题,常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.,-19-,考点1,考点2,考点3,对点训练1如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BGGC=
9、DHHC=12.(1)求证:E,F,G,H四点共面; (2)设EG与FH交于点P,求证:P,A,C三点共线.,-20-,考点1,考点2,考点3,证明 (1)E,F分别为AB,AD的中点, EFBD.GHBD,EFGH. E,F,G,H四点共面. (2)EGFH=P,PEG,EG平面ABC, P平面ABC.同理P平面ADC. P为平面ABC与平面ADC的公共点. 又平面ABC平面ADC=AC, PAC,P,A,C三点共线.,-21-,考点1,考点2,考点3,例2平面过正方体ABCD-A1B1C1D1的顶点A,平面CB1D1,平面ABCD=m,平面ABB1A1=n,则m,n所成角的正弦值为( ),
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西 2020 高考 数学 一轮 复习 第八 立体几何 83 空间 直线 平面 之间 位置 关系 课件 PPTX
