2020版高考数学一轮复习5.3平面向量的数量积与平面向量的应用课件理北师大版.pptx
《2020版高考数学一轮复习5.3平面向量的数量积与平面向量的应用课件理北师大版.pptx》由会员分享,可在线阅读,更多相关《2020版高考数学一轮复习5.3平面向量的数量积与平面向量的应用课件理北师大版.pptx(41页珍藏版)》请在麦多课文档分享上搜索。
1、5.3 平面向量的数量积 与平面向量的应用,-2-,知识梳理,考点自诊,1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为,则数量|a|b|cos 叫做a与b的数量积(或内积),记作ab,即ab= ,规定零向量与任一向量的数量积为0,即0a=0. (2)几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积.,|a|b|cos ,-3-,知识梳理,考点自诊,x1x2+y1y2,x1x2+y1y2=0,-4-,知识梳理,考点自诊,3.平面向量数量积的运算律 (1)ab=ba(交换律). (2)ab=(ab)=a(b)(结合律). (3)(a+b)c=
2、ac+bc(分配律).,-5-,知识梳理,考点自诊,1.平面向量数量积运算的常用公式: (1)(a+b)(a-b)=a2-b2. (2)(ab)2=a22ab+b2. 2.当a与b同向时,ab=|a|b|;当a与b反向时,ab=-|a|b|. 3.ab|a|b|.,-6-,知识梳理,考点自诊,1.判断下列结论是否正确,正确的画“”,错误的画“”. (1)一个非零向量在另一个非零向量方向上的投影为数量,且有正有负. ( ) (2)若ab0,则a和b的夹角为锐角;若ab0,则a和b的夹角为钝角. ( ) (3)若ab=0,则必有ab. ( ) (4)(ab)c=a(bc). ( ) (5)若ab=
3、ac(a0),则b=c. ( ),-7-,知识梳理,考点自诊,2.(2018全国2,理4)已知向量a,b满足|a|=1,ab=-1,则a(2a-b)=( ) A.4 B.3 C.2 D.0,B,解析:a(2a-b)=2a2-ab=2-(-1)=3.,3.(2018山西吕梁一模,3)若|a|=1,|b|=2,且(a+b)a,则a与b的夹角为( ),C,-8-,知识梳理,考点自诊,4.(2017全国1,文13)已知向量a=(-1,2),b=(m,1),若向量a+b与a垂直,则m= .,7,解析:因为a=(-1,2),b=(m,1), 所以a+b=(m-1,3). 因为a+b与a垂直,所以(a+b)
4、a=0,即-(m-1)+23=0,解得m=7.,2,-9-,考点1,考点2,考点3,平面向量数量积的运算,C,-10-,考点1,考点2,考点3,-11-,考点1,考点2,考点3,思考求向量数量积的运算有几种形式? 解题心得1.求两个向量的数量积有三种方法: (1)当已知向量的模和夹角时,利用定义求解,即ab=|a|b|cos (其中是向量a与b的夹角). (2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1), b=(x2,y2),则ab=x1x2+y1y2. (3)利用数量积的几何意义.数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积. 2.解决涉及几何图形
5、的向量数量积运算问题时,可利用向量的加减运算或数量积的运算律化简.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.,-12-,考点1,考点2,考点3,B,D,-13-,考点1,考点2,考点3,-14-,考点1,考点2,考点3,-15-,考点1,考点2,考点3,-16-,考点1,考点2,考点3,平面向量的模及应用,B,A,-17-,考点1,考点2,考点3,-18-,考点1,考点2,考点3,-19-,考点1,考点2,考点3,思考求向量的模及求向量模的最值有哪些方法? 解题心得1.求向量的模的方法: (1)公式法,利用 及(ab)2=|a|22ab+|b|2,把向量的模的运算转化为数量积运算
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 一轮 复习 53 平面 向量 数量 应用 课件 北师大 PPTX
