UFC 3-210-10-2010 LOW IMPACT DEVELOPMENT.pdf
《UFC 3-210-10-2010 LOW IMPACT DEVELOPMENT.pdf》由会员分享,可在线阅读,更多相关《UFC 3-210-10-2010 LOW IMPACT DEVELOPMENT.pdf(48页珍藏版)》请在麦多课文档分享上搜索。
1、UFC 3-210-10 15 NOVEMBER 2010 UNIFIED FACILITIES CRITERIA (UFC) LOW IMPACT DEVELOPMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-UFC 3-210-10 15 NOVEMBER 2010 Any copyrighted material included
2、 in this UFC is identified at its point of use. Use of the copyrighted material apart from this UFC must have the permission of the copyright holder. U.S. ARMY CORPS OF ENGINEERS NAVAL FACILITIES ENGINEERING COMMAND (Preparing Activity) AIR FORCE CIVIL ENGINEER SUPPORT AGENCY Record of Changes (chan
3、ges are indicated by 1 . /1/) Change No. Date Location This UFC supersedes UFC 3-210-10, dated 25 October 2004, UFC 3-210-10N (DRAFT) and ITG FY10-2, both dated 6 April 2010.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-UFC 3-210-10 15 NOVEMBER 201
4、0 FOREWORD The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides planning, design, construction, sustainment, restoration, and modernization criteria, and applies to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance with USD(
5、AT geographical location, site requirements, available sites, programmed space requirements related to increased impervious area, and the ability of the installation to maintain the LID-IMP. These set points will also help to determine the proper resource allocations to apply for the implementation
6、of the LID site. LID is a method of SWM that focuses on the macro vision for site development. LID is implemented on every square foot of the site at the point of rainfall onward. LID-IMPs used in conjunction with conventional SWM will create a treatment train to hold, infiltrate, and filter the sto
7、rmwater runoff. The LID site will contain less channelization of stormwater, less impervious pavement, more trees, more open ditches (less curb and gutter), and more planting buffers (rainwater filters). Many parameters must be weighted in the design of a LID site. Design must match the particular r
8、egional conditions. Many of these site conditions affect the design of LID. Regional differences in weather patterns, soil types, groundwater conditions, existing development status, and current stormwater patterns will greatly influence the actual design and layout of the LID site and the choice of
9、 the LID-IMPs. However, one of the most important parameters will be the ratio of increased impervious surface area to the available land area or change in land cover. Optimal LID implementation on a suitable site may result is a reduction in project cost. Classic LID design should reduce the amount
10、 of disturbed land, reduce impervious surface area, eliminate curb and gutter, reduce the size of pipes and holding ponds, increase the area planted in low maintenance tree cover, and reduce high maintenance structural planting beds and Provided by IHSNot for ResaleNo reproduction or networking perm
11、itted without license from IHS-,-,-UFC 3-210-10 15 NOVEMBER 2010 18 grass. Building a large facility on a small site will cost more to implement LID than building a small building on a large site. The small site will require the selection of IMPs that are structural in nature and are more expensive
12、to build and maintain, while the small building on the large site can use the more organic LID-IMPs that are less costly and more easily maintained. 2-3 EPA LID GUIDANCE The following EPA manuals are referenced as sources: “Reducing Stormwater Costs through Low Impact Development (LID) Strategies an
13、d Practices” and “Low Impact Development (LID) A Literature Review”. These manuals were based on the PDGR document “Low-Impact Development Design Strategies; An Integrated Design Approach”, and is geared toward general site development. Sites on military bases may have additional constraints that wi
14、ll influence which LID-IMPs may be used. Other Federal Directives and Executive Orders that affect LID planning and design must be identified and considered. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-UFC 3-210-10 15 NOVEMBER 2010 19 APPENDIX B:
15、 CHAPTER 3 - STORMWATER MANAGEMENT Human development increases impervious surfaces. Buildings, roads, sidewalks, and parking lots quickly shed rainwater and increase the percentage of rainfall that ends up as runoff. The resulting increase in runoff volume and the peak flows create negative conseque
16、nces such as stream degradation and flooding risk. The principal objective of LID is to retain this increase in runoff on-site. LID techniques allow the developed site to mimic the pre-development hydrologic conditions. LID builds on the conventional SWM philosophies and carries them a step further.
17、 LID processes begin at the point where the rain falls. Considering incorporating LID concepts, tools, and approaches requires assessment of the following at a minimum: Will the concept closely mimic the hydrology of pre-development condition thereby meeting certain regulatory requirement and/or res
18、ource protection goals? Will the concept mitigate adverse effects from increased stormwater runoff from the project? Can the drainage conveyance structures be optimized and reduce the overall cost of the project? What might be the hurdles for public acceptance? If required for the project to move fo
19、rward, can these be reasonably achieved? Implementing LID alone on the project may not suffice in meeting all regulatory requirements. LID must be used in combination with applicable BMPs in order to continue to produce effective SWM benefits. 3-1 HYDROLOGIC CYCLE Dr. David Maidment in his Handbook
20、of Hydrology states: “The hydrologic cycle is the most fundamental principle of hydrology. Water evaporates from the oceans and the land surface, is carried over earth in atmospheric circulation as water vapor, precipitates again as rain or snow, is intercepted by trees and vegetation, provides runo
21、ff on the land surface, infiltrates into soils, recharges groundwater, discharges into streams, and ultimately, flows out into the oceans from which it will eventually evaporate once again. This immense water engine, fueled by solar energy, driven by gravity, proceeds endlessly in the presence or ab
22、sence of human activity.” Of the total precipitation that occurs, a portion of it is lost through the following: (i) interception due to land cover (ii) evapotranspiration (iii) surface depression storage (iv) infiltration Only the excess precipitation results in runoff that reaches receiving water
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- UFC3210102010LOWIMPACTDEVELOPMENTPDF
