SAE R-321-2007 Mechanics Modeling of Sheet Metal Forming (To Purchase Call 1-800-854-7179 USA Canada or 303-397-7956 Worldwide).pdf
《SAE R-321-2007 Mechanics Modeling of Sheet Metal Forming (To Purchase Call 1-800-854-7179 USA Canada or 303-397-7956 Worldwide).pdf》由会员分享,可在线阅读,更多相关《SAE R-321-2007 Mechanics Modeling of Sheet Metal Forming (To Purchase Call 1-800-854-7179 USA Canada or 303-397-7956 Worldwide).pdf(324页珍藏版)》请在麦多课文档分享上搜索。
1、Mechanics Modeling of Sheet Metal Forming Sing C. Tang and Jwo Pan AMechanics Modeling of Sheet Metal Forming Sing C. Tang Jwo Pan Warrendale, Pa. Copyright 2007 SAE International eISBN: 978-0-7680-5097-4All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
2、, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. For permission and licensing requests, contact: SAE Permissions 400 Commonwealth Drive Warrendale, PA 15096-0001 USA E-mail: permissionssae.org T
3、el: 724-772-4028 Fax: 724-772-4891 Library of Congress Cataloging-in-Publication Data Tang, Sing C. Mechanics modeling of sheet metal forming / Sing C. Tang, Jwo Pan. p. cm. Includes bibliographical references and index. ISBN 978-0-7680-0896-8 1. Sheet-metal work. 2. Continuum mechanics. I. Pan, J.
4、(Jwo). II. Title. TS250.T335 2007 671.823011-dc22 2006039364 SAE International 400 Commonwealth Drive Warrendale, PA 15096-0001 USA E-mail: CustomerServicesae.org Tel: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) Fax: 724-776-1615 Copyright 2007 SAE International ISBN 978-0-7680-0
5、896-8 SAE Order No. R-321 Printed in the United States of America.Thanks to our families for their support and patience. To my wife Kin Ling Sing C. Tang To my mom Mei-Chin and my wife Michelle Jwo PanContents Preface . xi 1. Introduction to Typical Automotive Sheet Metal Forming Processes 1 1.1 Str
6、etching and Drawing 2 1.2 Trimming 7 1.3 Flanging and Hemming 7 1.4 References 9 2. Tensor, Stress, and Strain 11 2.1 Transformation of Vectors and Tensors in Cartesian Coordinate Systems 11 2.2 Transformation of Vectors and Tensors in General Coordinate Systems 15 2.3 Stress and Equilibrium 19 2.4
7、Principal Stresses and Stress Invariants 23 2.5 Finite Deformation Kinematics 25 2.6 Small Strain Theory 28 2.7 Different Stress Tensors 32 2.8 Stresses and Strains from Tensile Tests 36 2.9 Reference 37 3. Constitutive Laws 39 3.1 Linear Elastic Isotropic Materials 40 3.2 Linear Elastic Anisotropic
8、 Materials 44 3.3 Different Models for Uniaxial Stress-Strain Curves 47 3.4 Yield Functions Under Multiaxial Stresses 52 3.4.1 Maximum Plastic Work Inequality 52 3.4.2 Yield Functions for Isotropic Materials 53 3.4.2.1 von Mises Yield Condition 55 3.4.2.2 Tresca Yield Condition 56 3.4.2.3 Plane Stre
9、ss Yield Conditions for Isotropic Materials 57 3.4.3 Yield Functions for Anisotropic Materials 59 3.4.3.1 Hill Quadratic Yield Condition for Orthotropic Materials 60vi Mechanics Modeling of Sheet Metal Forming 3.4.3.2 A General Plane Stress Anisotropic Yield Condition .65 3.5 Evolution of Yield Surf
10、ace 67 3.6 Isotropic Hardening Based on the von Mises Yield Condition 71 3.7 Anisotropie Hardening Based on the von Mises Yield Condition 76 3.8 Isotropic Hardening Based on the von Mises Yield Condition with Rate Sensitivity 79 3.9 Isotropic and Anisotropic Hardening Based on the Hill Quadratic Ani
11、sotropic Yield Condition 83 3.10 Plastic Localization and Forming Limit Diagram 86 3.11 Modeling of Failure Processes 88 3.12 References .92 4. Mathematical Models for Sheet Metal Forming Processes 95 4.1 Governing Equations for Simulation of Sheet Metal Forming Processes 95 4.2 Equations of Motion
12、for Continua .95 4.3 Equations of Motion in Discrete Form 96 4.3.1 Internal Nodal Force Vector 97 4.3.2 External Nodal Force Vector 97 4.3.3 Contact Nodal Force Vector 97 4.3.4 Mass and Damping Matrices 98 4.3.5 Equations of Motion in Matrix Form 99 4.4 Tool Surface Models 99 4.5 Surface Contact wit
13、h Friction 100 4.5.1 Formulation for the Direct Method .102 4.5.2 Formulation for the Lagrangian Multiplier Method 103 4.5.3 Formulation for the Penalty Method 107 4.6 Draw-Bead Model 109 4.6.1 Draw-Bead Restraint Force by Computation. 113 4.6.2 Draw-Bead Restraint Force by Measurement 113 4.7 Refer
14、ences 115 5. Thin Plate and Shell Analyses 117 5.1 Plates and General Shells 117 5.2 Assumptions and Approximations 117 5.3 Base Vectors and Metric Tensors 118Contents vii 5.4 Lagrangian Strains 125 5.5 Classical Shell Theory 126 5.5.1 Strain-Displacement Relationship 126 5.5.2 Principle of Virtual
15、Work 131 5.5.3 Constitutive Equation for the Classical Shell Theory 131 5.5.4 Yield Function and Flow Rule for the Classical Shell Theory 132 5.5.5 Consistent Material Tangent Stiffness Tensor 134 5.5.6 Stress Resultant Constitutive Relationship 140 5.6 Shell Theory with Transverse Shear Deformation
16、 141 5.6.1 Constitutive Equation for the Shell Theory with Transverse Shear Deformation 142 5.6.2 Consistent Material Tangent Stiffness Tensor with Transverse Shear Deformation 143 5.7 References .147 6. Finite Element Methods for Thin Shells 149 6.1 Introduction 149 6.1.1 Computer-Aided Engineering
17、 (CAE) Requirements for Shell Elements 150 6.1.2 Displacement Method 150 6.2 Finite Element Method for the Classical Shell TheoryTotal Lagrangian Formulation 151 6.2.1 Strain-Displacement Relationship in Incremental Forms 151 6.2.2 Virtual Work Due to the Internal Nodal Force Vector 152 6.2.3 Discre
18、tization of Spatial Variables in a Curved Triangular Shell Element 154 6.2.4 Increments of the Strain Field in Terms of Nodal Displacement Increments .156 6.2.5 Element Tangent Stiffness Matrix and Nodal Force Vector 160 6.2.6 Basic and Shape (Interpolation) Functions 162 6.2.7 Numerical Integration
19、 for a Curved Triangular Shell Element 167 6.2.8 Updating Configurations, Strains, and Stresses 171 6.3 Finite Element Method for a Shell with Transverse Shear DeformationUpdated Lagrangian Formulation 173 6.3.1 Strain-Displacement Relationship in Incremental Form 173 6.3.2 Virtual Work Due to the I
20、nternal Nodal Force Vector .177 6.3.3 Discretization of Spatial Variables in a Quadrilateral Shell Element. 179 6.3.4 Increment of the Strain Field in Terms of Nodal Displacement Increments 180 6.3.5 Element Tangent Stiffness Matrix and Nodal Force Vector 181viii Mechanics Modeling of Sheet Metal Fo
21、rming 6.3.6 Shape (Interpolation) Functions 186 6.3.7 Numerical Integration for a Quadrilateral Shell Element 187 6.3.8 Five to Six Degrees of Freedom per Node 189 6.3.9 Updating Configurations, Strains, and Stresses 189 6.3.10 Shear Lock and Membrane Lock 197 6.4 Discussion of C1 and C0 Continuous
22、Elements 199 6.5 References 200 7. Methods of Solution and Numerical Examples 201 7.1 Introduction to Methods for Solving Equations of Motion 201 7.1.1 Equations of Motion and Constraint Conditions 201 7.1.2 Boundary and Initial Conditions 204 7.1.3 Explicit and Implicit Integration 205 7.1.4 Quasi-
23、Static Equations 205 7.2 Explicit Integration of Equations of Motion with Constraint Conditions 206 7.2.1 Discretization and Solutions 206 7.2.2 Numerical Instability 208 7.2.3 Computing Contact Nodal Forces 209 7.2.4 Updating Variables for Dynamic Explicit Integration 209 7.2.5 Summary of the Dynam
24、ic Explicit Integration Method with Contact Nodal Forces Computed by the Penalty Method 210 7.2.6 Application of the Dynamic Explicit Integration Method to Sheet Metal Forming Analysis 210 7.3 Implicit Integration of Equations of Motion with Constraint Conditions 210 7.3.1 Newmarks Integration Schem
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SAER3212007MECHANICSMODELINGOFSHEETMETALFORMINGTOPURCHASECALL18008547179USACANADAOR3033977956WORLDWIDEPDF

链接地址:http://www.mydoc123.com/p-1028285.html