REG NACA-TN-2744-1952 Practical calculation of second-order supersonic flow past nonlifting bodies of revolution.pdf
《REG NACA-TN-2744-1952 Practical calculation of second-order supersonic flow past nonlifting bodies of revolution.pdf》由会员分享,可在线阅读,更多相关《REG NACA-TN-2744-1952 Practical calculation of second-order supersonic flow past nonlifting bodies of revolution.pdf(68页珍藏版)》请在麦多课文档分享上搜索。
1、U3-J.FOR AERONAUTICSTECHNICAL NOTE 2744PRACTICAL CALCULATION OF SECOND-ORDER SUPERSONICFLOW PAST NONLIFT13JG BODIES OFBy Milton D. Van DykeREVOLUTION- .,Ames AeronauticalMoffettField,Laborar yCalif.:.)-$r at r = R(x) (lls).Smooth bodies.- For bodies without corners,the choice of tangencycondition ha
2、s no consistent effect upon the error in surface velocity.Greater accuracy in the second-order solution results from using the.exact tangency condition in some cases, but the approximate condition.+ lThe magnitude of this effect was brought to the authorrs attention by. John Huth and E. P. Willisms
3、of the Rand Corporation.Y. . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-z8 NACA TN 2744.,in others.2 For example, the exact condition leads to eater accuracyfor cones, as shown in sketch (b). This superiority, of course, arisesat the tiP of any
4、 potited body and persists for sQme distance down-stream. On the other hand, the approximate tangency condition leadsgreater accuracy for the boattail following a long cylinder shown insketch.875,900.9?5$.950.975Low(c), for-which the exact solutionh/,YSecond-order sohticw:dExact tangency0 .5 1.0 1.5
5、 2.0 2.5tod“a71-e.x, semicalJbersaSketch (c)!Ibus the conclusion,based upon estimatesneither tangency condition is consistentlyempirically for smooth bodies. .Bodies with corners.- In plane flow, the approximate tangency “. condition insatiablyleads to more accurate first- and second-order uvelociti
6、es than the exact condition. The superiority of the approxi-mate tangency condition is most pronounced for expansions, and becomesgreater as the Mach number falls toward unityAt a corner on a body of revolution the flow is locally hro-dimensional. Therefore the approximate tangency condition is, at
7、least.locally, consistently superior to the exact condition for both them21n the first-order solution,however, the approximate ency condi- .tion eeems invariably to yield greater accuracy. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2;.NACA TN 9
8、first- and second-order solutions. This is shown.in sketch (d) forthe velocity just behind thecorner of a conical boattailwhich follows a very longcircular cylinder. (The .exact solution is, of course,given by a plane Prandtl-Meyer expansion.) At moderate *Mach numbers, tbe superiorityL ,.of the app
9、roximate tangencycondition is of considerableTractical importance in thesecond-order solution. Thesuperiority is not confinedto the immediatevicinity ofthe corner, but persists fardownstream. This is illus-trated in sketch (e)by comp-arison with the solution fora conical boattail calculatedby the me
10、thod of characteris-tics. (For clarity, the first-order solutions are only par-tially shown.)1 Sketch (d) suggests thatthe large discrepancy associatedwith the choice of tsmgegcy con-dition is in some sense a tran-sonic phenomenon. This isconfirmed by examination of theexpressions for the streamwise
11、velocity just behind the corner.For expansion through an anglewhose tangent is , the second-order solution using the exacttangency condition is(12a)f.31.2ur./I.oExact sofufionISecond-wder/1.35i. 30f.25/.20qz1.51./01.05/.00r? 3 4InSketch (d)First- order soution, _Approx. tangency.fia , second-order S
12、OI.t*enequal to the length of the cone. Otherwise, the meridian curve willordinarilybegti with finite curvature. For a specified limit ofnumerical error, the maximum permissible length of the first intervalmust be proportional to the initial radius of curvature,which is theprimary length in the prob
13、lem. The factor of proportionalitywill, ofcourse, depend won the shape of the body. If the meridian cwve isanalytic, dimensional analysis combinedwith the supersonic sitilitYrule indicates that the first interval is given by an expression of theform5 i(30)Here ?, Rot, Roirt are the first three deriv
14、atives bf R(x) eval-uated at the vertex, and the dots indicate that no appreciable depend-ence upon higher derivatives is to be expected. Tndeed, for slendersmooth bodies even the second.variable Ro/(f2)f2) is no-lly verYsmall comparedwith the first. Hence it may be assumed that the func-tion Go doe
15、s not depend GignifLcantlyupon its second variable, sothat the length of the first interval is given by180= Go(wO)MIRo” ) (31)It is now clear that the body shape need not be analytic throughout thqfirst interval; it.is sufficientthat no violent changes in curvatureoccur.%hat the denominator shouldbe
16、 taken a MRo rather than o isSuggested by the result of equation 32).,.,* “,-*a71 “Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NAC!ATN 2744 21!lheform of the function Go can be determined by analysis,because the second-order solution at the end o
17、f the first interval ofa general.ogive can be calcul-tedexactly as well.as approximately ifthe interval is very short. Although the result is formidable, itsimplifies greatly in the limiting case when o approaches unity(whichcorrespondsphysically to the Mach cone becoming tangent to tHenose). In thi
18、s case, for a relative numerical error x in stream-wise velocity perturbation, the length of the first interval isJ8= 1 (-P% 2)Jm as ,8R0t+l (Y)7+1 MIRo”lNumerical exmples show that this asymptotic form is, with a revisedconstant of proportionality, a good approximation to the functionthroughout the
19、 range of practical application. The relative numericalerror at the end of the first interval will not exceed 1 percent i1It is conceivable that an unusual body shapefor which the curvature would change considerablyso, the above rule would not apply (the variable,.-might be encounteredover,this leng
20、th. IfRn/(Ro“2j ineqktion (30)would not be negligible), 8nd some eri its form is different because R rather than l/Rtt istaken as the primary reference length. (The second variable here has no counterpart in equation (30)because R is zero at the tip.) Fora smooth slender body, the third variable is
21、ordinarily very small, as%his rule ordinarily permits greater first intervals than the ruleZio= 0.025/ times initial radius of curvature which was previouslySuggested in reference 4-. .,Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-22 NACA TN 2744a
22、re all subsequentvariables which involve higher derivatives. Thenaccording to the argument used previously, the function G1 dependssignificantlyupon only its first two variables This conclusion isreinforcedby the empirically determined fact that disconttiuitiesincurvaturemust be accounted for separa
23、tely,but not jumps in third and Ihigher derivatives. Hence the nth interval is giveu byAs before, the assumption that the body is analytic can now be replaced .by the requirement that no violent changes in curvature occur.Analytic determinationof the function GI seems impractical.It detailed form co
24、uld be determined experimefitallybycalculating a 1number of solutionsusing intervals of various lengths. However,experience suggests that for the body shapes encountered in practice G1may be taken as a constant. The relative numerical error will appar-ently not exceed 1 percent if internal intervals
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- REGNACATN27441952PRACTICALCALCULATIONOFSECONDORDERSUPERSONICFLOWPASTNONLIFTINGBODIESOFREVOLUTIONPDF

链接地址:http://www.mydoc123.com/p-1017520.html