欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年春八年级数学下册第1章三角形的证明1.4角平分线第1课时角平分线的性质课件(新版)北师大版.ppt

    • 资源ID:953748       资源大小:1.48MB        全文页数:22页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年春八年级数学下册第1章三角形的证明1.4角平分线第1课时角平分线的性质课件(新版)北师大版.ppt

    1、1.4 角平分线,第一章 三角形的证明,第1课时 角平分线,1.会叙述角平分线的性质及判定;(重点) 2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;(难点) 3.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力,学习目标,情境引入,如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路与铁路交叉处500米,这个集贸市场应建在何处? (比例尺为120000),D,C,S,解:作夹角的角平分线OC,,截取OD=2.5cm ,D即为所求.,O,导入新课,1. 操作测量:取点P的三个不同的位置,分别

    2、过点P作 PDOA,PE OB,点D、E为垂足,测量PD、PE的长.将 三次数据填入下表:,2. 观察测量结果,猜想线段PD与PE的大小关系,写出结:_,C,O,B,A,PD=PE,实验:OC是AOB的平分线,点P是射线OC上的任意一点,猜想:角的平分线上的点到角的两边的距离相等.,讲授新课,验证猜想,已知:如图, AOC= BOC,点P在OC上,PDOA,PEOB,垂足分别为D,E. 求证:PD=PE.,证明:, PDOA,PEOB,, PDO= PEO=90 .,在PDO和PEO中,,PDO= PEO,,AOC= BOC,,OP= OP,, PDO PEO(AAS).,PD=PE.,角的平

    3、分线上的点到角的两边的距离相等,性质定理: 角的平分线上的点到角的两边的距离相等.,应用所具备的条件:,定理的作用:,证明线段相等.,应用格式:,OP 是AOB的平分线,,PD = PE,(在角的平分线上的点到这个角的两边的距离相等).,推理的理由有三个,必须写完全,不能少了任何一个.,PDOA,PEOB,,判一判:(1) 如下左图,AD平分BAC(已知),, = ,( ),在角的平分线上的点到这个角的两边的距离相等,BD CD,(2) 如上右图, DCAC,DBAB (已知)., = , ( ),在角的平分线上的点到这个角的两边的距离相等,BD CD,例1:已知:如图,在ABC中,AD是它的

    4、角平分线,且BD=CD, DEAB, DFAC.垂足分别为E,F. 求证:EB=FC.,证明: AD是BAC的角平分线, DEAB, DFAC,, DE=DF, DEB=DFC=90 .,在RtBDE 和 RtCDF中,, RtBDE RtCDF(HL)., EB=FC.,例2:如图,AM是BAC的平分线,点P在AM上,PDAB,PEAC,垂足分别是D、E,PD=4cm,则PE=_cm.,4,温馨提示:存在两条垂线段直接应用,变式:如 图,在RtABC中,AC=BC,C90,AP平分BAC交BC于点P,若PC4, AB=14. (1)则点P到AB的距离为_.,4,温馨提示:存在一条垂线段构造应

    5、用,变式:如图,在Rt ABC中,AC=BC,C900,AP平分BAC交BC于点P,若PC4,AB=14. (2)求APB的面积.,(3)求PDB的周长.,ABPD=28.,由垂直平分线的性质,可知,PD=PC=4,,1.应用角平分线性质:,存在角平分线,涉及距离问题,2.联系角平分线性质:,面积,周长,条件,知识与方法,利用角平分线的性质所得到的等量关系进行转化求解,角的内部到角的两边距离相等的点在角的平分线上,思考:交换角的平分线性质中的已知和结论,你能得到什么结论,这个新结论正确吗?,角平分线的性质:,角的平分线上的点到角的两边的距离相等.,思考:这个结论正确吗?,逆 命 题,已知:如图

    6、,PDOA,PEOB,垂足分别是D、E,PD=PE. 求证:点P在AOB的角平分线上.,证明:,作射线OP,,点P在AOB 角的平分线上.,在RtPDO和RtPEO 中,,(全等三角形的对应角相等).,OP=OP(公共边),,PD= PE(已知 ),,PDOA,PEOB.,PDO=PEO=90,,RtPDORtPEO( HL).,AOP=BOP,证明猜想,判定定理: 角的内部到角的两边的距离相等的点在角的平分线上.,应用所具备的条件:,定理的作用:判断点是否在角平分线上.,应用格式:, PDOA,PEOB,PD=PE.,点P 在AOB的平分线上.,知识总结,例3:如图,已知CBD和BCE的平分

    7、线相交于点F, 求证:点F在DAE的平分线上,证明:,过点F作FGAE于G,FHAD于H,FMBC于M.,点F在BCE的平分线上, FGAE, FMBC.,FGFM.,又点F在CBD的平分线上, FHAD, FMBC,,FMFH,,FGFH.,点F在DAE的平分线上.,G,H,M,A,B,C,F,E,D,例4 如图,某地有两所大学和两条交叉的公路图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计(尺规作图,不写作法,保留作图痕迹),方法总结:到角两边距离相等的点在角的平

    8、分线上,到两点距离相等的点在两点连线的垂直平分线上.,解:如图所示:,归纳总结,OP平分AOB,PDOA于D,PEOB于E,PD=PE,OP平分AOB,PD=PE,PDOA于D,PEOB于E,角的平分线的判定,角的平分线的性质,当堂练习,2.ABC中, C=90,AD平分CAB,且BC=8,BD=5,则点D到AB的距离是 .,3,E,1. 如图,DEAB,DFBG,垂足分别是E,F, DE =DF, EDB= 60,则 EBF= 度,BE= .,60,BF,3.已知用三角尺可按下面方法画角平分线:在已知AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分AOB.为什么?,A,O,B,M,N,P,解:在RTMOP和RTNOP中,OM=ON,OP=OP, RTMOPRTNOP(HL). MOP=NOP,即OP平分AOB.,课堂小结,角平分线,性质定理,一个点:角平分线上的点; 二距离:点到角两边的距离; 两相等:两条垂线段相等,辅助线 添加,过角平分线上一点向两边作垂线段,判定定理,在一个角的内部,到角两边距离相等的点在这个角的平分线上,


    注意事项

    本文(2019年春八年级数学下册第1章三角形的证明1.4角平分线第1课时角平分线的性质课件(新版)北师大版.ppt)为本站会员(boatfragile160)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开