欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    BS PD IEC TS 62129-3-2014 Calibration of wavelength optical frequency measurement instruments Optical frequency meters using optical frequency combs《波长 光频测量仪器的校准 使用光学频率梳的光学频率计》.pdf

    • 资源ID:588963       资源大小:1.40MB        全文页数:24页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    BS PD IEC TS 62129-3-2014 Calibration of wavelength optical frequency measurement instruments Optical frequency meters using optical frequency combs《波长 光频测量仪器的校准 使用光学频率梳的光学频率计》.pdf

    1、BSI Standards PublicationCalibration of wavelength/optical frequency measurement instrumentsPart 3: Optical frequency meters using optical frequency combsPD IEC/TS 62129-3:2014National forewordThis Published Document is the UK implementation of IEC/TS 62129-3:2014.The UK participation in its prepara

    2、tion was entrusted to TechnicalCommittee GEL/86, Fibre optics.A list of organizations represented on this committee can be obtained onrequest to its secretary.This publication does not purport to include all the necessary provisions ofa contract. Users are responsible for its correct application. Th

    3、e British Standards Institution 2014.Published by BSI Standards Limited 2014ISBN 978 0 580 84250 4ICS 33.180.30Compliance with a British Standard cannot confer immunity fromlegal obligations.This Published Document was published under the authority of theStandards Policy and Strategy Committee on 31

    4、 August 2014.Amendments/corrigenda issued since publicationDate Text affectedPUBLISHED DOCUMENTPD IEC/TS 62129-3:2014IEC TS 62129-3 Edition 1.0 2014-02 TECHNICAL SPECIFICATION Calibration of wavelength/optical frequency measurement instruments Part 3: Optical frequency meters using optical frequency

    5、 combs INTERNATIONAL ELECTROTECHNICAL COMMISSION R ICS 33.180.30 PRICE CODE ISBN 978-2-8322-1421-3 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distributor. colourinsidePD IEC/TS 62129-3:2014 2 TS 62129

    6、-3 IEC:2014(E) CONTENTS FOREWORD . 3 INTRODUCTION . 5 1 Scope 6 2 Normative references 6 3 Terms and definitions 6 4 Calibration test requirements . 7 4.1 Preparation . 7 4.2 Reference test conditions . 8 4.3 Traceability . 8 4.3.1 General . 8 4.3.2 National standard 8 4.3.3 Transfer standard 9 4.3.

    7、4 Working standard 9 5 Optical frequency calibration . 9 5.1 General . 9 5.2 Establishing the calibration conditions 11 5.3 Calibration procedure 11 5.3.1 General . 11 5.3.2 Measurement configuration . 11 5.3.3 Detailed procedure 13 5.4 Calibration uncertainty 13 5.5 Reporting the results . 13 Annex

    8、 A (normative) Mathematical basis . 14 A.1 General . 14 A.2 Type A evaluation of uncertainty . 14 A.3 Type B evaluation of uncertainty . 15 A.4 Determining the combined standard uncertainty 15 A.5 Reporting 16 Annex B (informative) References of optical frequency comb source . 17 B.1 Method A (mode-

    9、locked fibre laser + carrier-envelope phase lock) 17 B.2 Method B (stabilized laser + electro-optical modulator) . 17 B.3 Method C (stabilized laser + supercontinuum source) . 18 Annex C (informative) Frequency-dependence of uncertainty . 19 Bibliography 20 Figure 1 Traceability chain using optical

    10、frequency measurement scheme . 9 Figure 2 Schematic configuration of optical frequency measurement technique that uses optical comb . 10 Figure 3 Optical spectra of lasers and optical frequency combs . 11 Figure 4 Optical frequency meter measurement using a reference source 12 Figure 5 Optical frequ

    11、ency meter measurement using a reference optical frequency meter 12 Figure B.1 Mode-locked laser + nonlinear optical effect . 17 Figure B.2 Electro-optical modulator type comb source 18 Figure B.3 Supercontinuum source 18 PD IEC/TS 62129-3:2014TS 62129-3 IEC:2014(E) 3 INTERNATIONAL ELECTROTECHNICAL

    12、COMMISSION _ CALIBRATION OF WAVELENGTH/OPTICAL FREQUENCY MEASUREMENT INSTRUMENTS Part 3: Optical frequency meters using optical frequency combs FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical com

    13、mittees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technic

    14、al Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmenta

    15、l and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. 2) The formal decisions or agre

    16、ements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the form of recommendations for international use

    17、and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. 4) In order to promot

    18、e international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicat

    19、ed in the latter. 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. 6) A

    20、ll users should ensure that they have the latest edition of this publication. 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage

    21、or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attention is drawn to the Normative references cited in this publica

    22、tion. Use of the referenced publications is indispensable for the correct application of this publication. 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such

    23、 patent rights. The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when the required support cannot be obtained for the publication of an International Standard,

    24、 despite repeated efforts, or the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard. Technical specifications are subject to review within three years of publication to decide whe

    25、ther they can be transformed into International Standards. IEC/TS 62129-3, which is a technical specification, has been prepared by IEC technical committee 86: Fibre optics. PD IEC/TS 62129-3:2014 4 TS 62129-3 IEC:2014(E) The text of this technical specification is based on the following documents:

    26、Enquiry draft Report on voting 86/461/DTS 86/465/RVC Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all p

    27、arts in the IEC 62129 series, published under the general title Calibration of wavelength/optical frequency measurement instruments, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC we

    28、b site under “http:/webstore.iec.ch“ in the data related to the specific publication. At this date, the publication will be transformed into an International standard, reconfirmed, withdrawn, replaced by a revised edition, or amended. A bilingual version of this publication may be issued at a later

    29、date. IMPORTANT The colour inside logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. PD IEC/TS 62129-3:2014TS 62129-3 IEC:201

    30、4(E) 5 INTRODUCTION It is essential for realizing fibre optic systems that optical channels are defined in the optical frequency domain, not the wavelength domain. One example, the anchor frequency of the ITU-T grid is 193,1 THz, and the channel spacings of the ITU-T grid are 12,5 GHz, 25 GHz, 50 GH

    31、z, and 100 GHz 21. ITU-T has also discussed -interface systems such as “black link” 3. “Black link” includes WDM MUX/DEMUX and a transmission fibre, and provides -interfaces. Especially in DWDM systems (channel spacing 100 GHz), the uncertainty in specifying optical frequency needs to be minimized.

    32、To implement future telecom systems, it is expected that optical frequency measurements will need to be extremely precise. For example, to achieve the channel spacing of 25 GHz, signal optical frequency uncertainty (Ufsig) and required measurement uncertainty (Ufmeas) need to be 2 GHz to 200 MHz (Uf

    33、sig/ f = 105to 106) and 200 MHz to 2 MHz (Ufmeas / f = 106to 108), respectively. Unfortunately, conventional wavelength meters have measurement uncertainties of 106to 107. The solution is to use optical frequency measurements since measurement uncertainties can be as small as 1015to 1016, which sati

    34、sfies the above telecom requirement (Ufmeas / f = 106to 108). Therefore, an optical frequency measurement scheme is necessary for the calibration of future telecom systems. Optical frequency measurement technology is progressing rapidly. Many fundamental papers have examined the use of equally-space

    35、d “optical frequency comb” lines (spacing of up to 50 GHz) from an optical frequency comb as a “ruler” for optical frequency measurement 4-15. For example, mode-locked lasers with carrier-envelope phase locked enable ultra-low measurement uncertainties of 1015to 1016. Some examples of practical opti

    36、cal frequency combs are shown in Annex B (mode-locked fibre laser + carrier-envelope phase lock, stabilized laser + electro-optical modulator, and stabilized laser + supercontinuum source). Frequency measurements provide more accurate values than interferometric wavelength measurements in air by eli

    37、minating the effects of refractive indices. Furthermore, they allow the measurement devices to be significantly smaller than wavelength meters. _ 1Numbers between square brackets refer to the Bibliography. PD IEC/TS 62129-3:2014 6 TS 62129-3 IEC:2014(E) CALIBRATION OF WAVELENGTH/OPTICAL FREQUENCY ME

    38、ASUREMENT INSTRUMENTS Part 3: Optical frequency meters using optical frequency combs 1 Scope This part of IEC 62129, which is a technical specification, describes the calibration of optical frequency meters. It is applicable to instruments measuring the optical frequency emitted from sources that ar

    39、e typical for the fibre-optic communications industry. It is assumed that the optical radiation will be coupled to the optical frequency meter by a single-mode optical fibre. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indi

    40、spensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60793-2-50, Optical fibres Part 2-50: Product specifications Sectional specification for class B single-m

    41、ode fibres IEC 60825-1, Safety of laser products Part 1: Equipment classification and requirements IEC 60825-2, Safety of laser products Part 2: Safety of optical fibre communication systems (OFCS) IEC/TR 61931, Fibre optic Terminology ISO/IEC 98-3, Uncertainty of measurement Part 3: Guide to the ex

    42、pression of uncertainty in measurement (GUM:1995) ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories 3 Terms and definitions For the purposes of this document, the terms and definitions contained in IEC/TR 61931, as well as the following terms and def

    43、initions, apply. 3.1 accredited calibration laboratory calibration laboratory authorized by the appropriate national organization to issue calibration certificates with a minimum specified uncertainty, which demonstrate traceability to national measurement standards 3.2 calibration set of operations

    44、 that establish, under specified conditions, the relationship between the values of quantities indicated by a measuring instrument and the corresponding values realized by measurement standards PD IEC/TS 62129-3:2014TS 62129-3 IEC:2014(E) 7 Note 1 to entry: The result of a calibration permits either

    45、 the assignment of values of measurands to the indications or the determination of corrections with respect to indications. Note 2 to entry: A calibration may also determine other metrological properties such as the effect of influence quantities. Note 3 to entry: The result of a calibration may be

    46、recorded in a document, sometimes called a calibration certificate or a calibration report. SOURCE: ISO/IEC Guide 99:2007, 2.39, modified 16 3.3 national (measurement) standard measurement standard recognized by a national decision to serve, in a country, as the basis for assigning values to other m

    47、easurement standards of the quantity concerned SOURCE: ISO/IEC Guide 99:2007, 5.3 modified 3.4 national standards laboratory laboratory which maintains the national measurement standard 3.5 reference standard measurement standard, generally having the highest metrological quality available at a give

    48、n location or in a given organization, from which measurements made there are derived SOURCE: ISO/IEC Guide 99:2007, 5.6 modified 3.6 traceability property of the result of a measurement or the value of a measurement standard whereby it can be related to stated references, usually national or intern

    49、ational measurement standards, through an unbroken chain of comparisons all having stated uncertainties SOURCE: ISO/IEC Guide 99:2007, 2.41 modified 3.7 traceability chain unbroken chain of comparison SOURCE: ISO/IEC Guide 99:2007, 2.42 modified 3.8 working standard measurement standard that is used routinely to calibrate or check measuring instruments Note 1 to entry: A working standard is usually calibrated against a reference standard. SO


    注意事项

    本文(BS PD IEC TS 62129-3-2014 Calibration of wavelength optical frequency measurement instruments Optical frequency meters using optical frequency combs《波长 光频测量仪器的校准 使用光学频率梳的光学频率计》.pdf)为本站会员(rimleave225)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开