欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D4513-2011(2017) Standard Test Method for Particle Size Distribution of Catalytic Materials by Sieving《用筛分法测定催化材料粒度分布的标准试验方法》.pdf

    • 资源ID:517259       资源大小:65.36KB        全文页数:3页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D4513-2011(2017) Standard Test Method for Particle Size Distribution of Catalytic Materials by Sieving《用筛分法测定催化材料粒度分布的标准试验方法》.pdf

    1、Designation: D4513 11 (Reapproved 2017)Standard Test Method forParticle Size Distribution of Catalytic Materials by Sieving1This standard is issued under the fixed designation D4513; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision,

    2、the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of particlesize distribution of catalytic powder material using

    3、a sievinginstrument and is one of several found valuable for themeasurement of particle size. This test method is particularlysuitable for particles in the 20 to 420-m range.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.

    4、2.1 ExceptionIn 5.2, mesh size is the standard unit ofmeasure.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica

    5、-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E11 Specification for Woven Wire Test Sieve Cloth and TestSievesE161 Specification for Precision Electroformed SievesE177 Practice for Use of the Terms Precision and Bias inASTM Test MethodsE456 Terminology Rel

    6、ating to Quality and Statistics3. Summary of Test Method3.1 A 50 % relative humidity-equilibrated sample of knownweight is allowed to fractionate on a series of various sizesieves to allow the various particle sizes to be collected onsuccessively smaller sieve openings.3.2 The sample fraction collec

    7、ted on each sieve of the seriesis weighed and its fractional part of the original sample isdetermined.4. Significance and Use4.1 This test method can be used to determine particle sizedistributions of catalysts and supports for materialsspecifications, manufacturing control, and research and devel-o

    8、pment work.5. Apparatus5.1 Laboratory Sieving Instrument, automatic with timerpreferred.5.2 U.S. Standard Sieves, or equivalent, to include microme-tres (mesh) 425(40), 250(60), 177(80), 149(100), 105(140),74(200), 44(325) and electroformed 30 and 20 micrometres.Because of their superior uniformity

    9、and resistance to distor-tion or damage during use, electroformed sieves, preferablywith square holes, are recommended. Sieves with diametersbetween 6 and 10 cm are suggested.5.3 Ultrasonic Cleaning Tank, 100 W.5.4 Transmitted Light Microscope, 300 magnification, withcalibrated scale eyepiece.5.5 He

    10、at Gun Dryer, (hair dryer or equivalent).5.6 Analytical Balance, capable of weighing to 0.001 g.5.7 Sample Splitter, Chute Type, or Spinning Riffler, withspinning riffler preferred.6. Reagents6.1 Antistatic Coating, (record cleaning spray or equiva-lent.)6.2 Alcohol-Water SolutionOne part ethanol to

    11、 nine partsdeionized or distilled water.7. Sampling7.1 The sample must be free-flowing and homogeneous. Ifparticle size segregation is apparent to either the eye or fromobservation under a microscope, remix and resample thematerial using the proper riffling procedure.7.2 Equilibrate the sample at 20

    12、 to 25C (68 to 77F) in adesiccator with a humidity level of 50 %. A 24-h period isusually sufficient.1This test method is under the jurisdiction of ASTM Committee D32 onCatalysts and is the direct responsibility of Subcommittee D32.02 on Physical-Mechanical Properties.Current edition approved Feb. 1

    13、, 2017. Published February 2017. Originallyapproved in 1985. Last previous edition approved in 2011 as D451311). DOI:10.1520/D4513-11R17.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume i

    14、nformation, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardi

    15、zation established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.18. Calibration and Standardization8.1 Prior to use, check all sieves for damage or impropercl

    16、eaning. If woven-wire sieves are used rather than the pre-ferred electroformed sieves, it is especially important tocarefully inspect the wire surface for wear, misalignment, tears,creases, or separation along the edges.NOTE 1Specifications for wire cloth sieves are described in Specifi-cation E11 a

    17、nd specifications for electroformed sieves are described inSpecification E161.9. Procedure9.1 Select appropriate sieves for the sample being analyzed,typically the 149, 105, 74, 44, and 20-m sieves.NOTE 2For optimum results, the estimated particle size should bedetermined by microscopic examination

    18、at 100300X. Sieves may then beselected to cover the size range of the particles.9.2 Clean 44 and 20-m sieves prior to use in an ultrasonicbath using a 10 % ethanol, 90 % water mixture. Dry the sievesin a low temperature air jet (hair dryer or equivalent) and allowto equilibrate at room temperature f

    19、or 30 min before obtainingthe tare weights.9.3 Tare each sieve and the fines collector pan, recordingeach weight to the nearest 0.001 g.9.4 After taring, moisten a sheet of tissue paper withantistatic spray and coat the inside wall surface of each sieveby rubbing with the coated tissue.9.5 Place the

    20、 sieves in a vertical stack in descending orderby mesh size (largest on top).9.6 Weigh a suitable amount of sample obtained by riffling,normally 0.5 to 1.0 g, and transfer into the largest mesh sieveat the top of the stack.9.7 Complete the assembly of the apparatus.9.8 Turn on and adjust to provide

    21、rapid transport through thesieves.9.9 Continue sieving for 2 min after no further separation isdetectable.NOTE 3After completion of sieving, none of the sieves should containmore than two to three particle layers. For most powder samples, 0.5 g ofsample provides a satisfactory quantity distribution.

    22、9.10 Stop the sieve action.9.11 Remove sieves carefully and weigh each sieve and thepan separately. Note the gross weight for each one and recordabove the corresponding tare weight.9.12 Sum the weight of sample on each sieve and the pan toobtain the total weight of the recovered sample. The totalwei

    23、ght of recovered material should check within 5 mg of thestarting sample weight.NOTE 4Examine the sieve fractions under a microscope to determinewhether the sieve particles in each fraction are within the size rangebetween the sieve and the next coarser sieve. If appreciable finer or coarserparticle

    24、s are present, tackiness is indicated. Dry and reequilibrate thesample and repeat the analysis.10. Presentation10.1 Calculate the weight percent of sample on each sieveby multiplying the net weight of each fraction by 100 anddividing by the total weight the total weight of recoveredsample.Weight% si

    25、eve fraction 5 100 3 S 2 T!/Wwhere:S = total weight after sieving, g,T = tare weight of sieve, g, andW = total weight of recovered sample, g.10.1.1 Calculate the cumulative percentage passing througheach sieve by adding its fractional percentage to the fractionalpercentage of all coarser sieves, and

    26、 subtracting the total from100 %. See Table 1 for an example of the calculations andpresentation.10.2 Median Particle SizeThe median particle size maybe determined by plotting the cumulative percentage dataagainst the mesh size and determining the size correspondingto 50 %.11. Precision and Bias (No

    27、te 5)11.1 Agreement among individual measurements was deter-mined using an equilibrium fluid cracking catalyst. Experimen-tal repeatability was measured for a number of analyses in eachof five laboratories. Experimental reproducibility was deter-mined by comparison of results from all seven of the l

    28、abora-tories participating in the round-robin testing program. Pairs oftest results obtained by a procedure similar to that describedherein are expected to differ in absolute value by less than2.77S, where 2.77S is the 95 % probability limit on thedifference between two test results, and S is the ap

    29、propriateestimate of standard deviation.NOTE 5Use of the terms “repeatability,” “reproducibility,”“precision,” and “bias” are in accordance with Terminology E456 andPractice E177.11.1.1 Experimental Repeatability3Repeatability is usedto designate the ability of an instrument to report the sameanswer

    30、 assuming no sample bias or operator influence. Ameasure of instrument repeatability is the standard deviation ofa number of runs. The results of testing the equilibrium fluidcatalytic cracking catalyst sample in each of five laboratoriesproduced an average standard deviation of the interpolated3Sup

    31、porting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D32-1015.TABLE 1 Presentation of Data Weight of Sample Used, 0.610 gSieve No.Mesh SizemicronsNet Weight,gWeight %Sieve FractionCumulative %Passing100 149 0.037 6.1 93.9140 105 0.034 5.

    32、6 88.3200 74 0.083 13.6 74.7325 44 0.193 31.6 43.1635 20 0.196 32.1 11.0Pan 0.067 11.0Total weight recovered 0.610 100.0D4513 11 (2017)2weight percent median diameter of 0.39 m, corresponding toa 2.77S % value of 61.7 %.11.1.2 Experimental Reproducibility3Reproducibilityamong instruments is used to

    33、measure the ability of severalinstruments to produce results which should be the same. Thisparameter takes into account any manufacturing differences ininstruments, any bias in formulating the samples, and anyoperator influence in performing the analyses. Experimentalreproducibility of the seven lab

    34、oratories when analyzing theequilibrium fluid catalytic cracking catalyst sample materialresulted in a median (50th percentile) value of 64.3 m with astandard deviation of 1.9 m, corresponding to a 2.77S % valueof 68.2 %.11.2 BiasStandard reference material is not presentlyavailable for determining

    35、bias.12. Keywords12.1 catalyst; particle size; sieves; sievingASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such

    36、patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited

    37、either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fa

    38、ir hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this st

    39、andard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http:/ 11 (2017)3


    注意事项

    本文(ASTM D4513-2011(2017) Standard Test Method for Particle Size Distribution of Catalytic Materials by Sieving《用筛分法测定催化材料粒度分布的标准试验方法》.pdf)为本站会员(赵齐羽)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开