欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM C1171-2005(2011) Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories《耐火材料热冲击效应和热循环效应定量测量的标准试验方法》.pdf

    • 资源ID:463611       资源大小:76.12KB        全文页数:4页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM C1171-2005(2011) Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories《耐火材料热冲击效应和热循环效应定量测量的标准试验方法》.pdf

    1、Designation: C1171 05 (Reapproved 2011)Standard Test Method forQuantitatively Measuring the Effect of Thermal Shock andThermal Cycling on Refractories1This standard is issued under the fixed designation C1171; the number immediately following the designation indicates the year oforiginal adoption or

    2、, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method is used for determining the strengthloss or reduction in conti

    3、nuity, or both, of prism-shapedspecimens which are cut from refractory brick or shapes andsubjected to thermal cycling.1.2 The strength loss is measured by the difference inmodulus of rupture (MOR) between uncycled specimens andthe specimens subjected to thermal cycling.1.3 The reduction in structur

    4、al continuity is estimated by thedifference in sonic velocity before and after thermal cycling.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered

    5、 standard.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Re

    6、ferenced Documents2.1 ASTM Standards:2C133 Test Methods for Cold Crushing Strength and Modu-lus of Rupture of RefractoriesC607 Practice for Coking Large Shapes of Carbon-BearingMaterialsC1419 Test Method for Sonic Velocity in Refractory Mate-rials at Room Temperature and Its Use in Obtaining anAppro

    7、ximate Youngs ModulusE4 Practices for Force Verification of Testing MachinesE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Significance and Use3.1 This test method indicates the ability of a refractoryproduct to withstand the stress generated by su

    8、dden changes intemperature.3.2 Because the recommended furnace temperature of thiscycling test is 1200C (2190F), this test method may notindicate the ability of a refractory product to withstand cyclingat higher or lower temperatures, especially if the existingmorphology of the refractory product ch

    9、anges.3.3 This test method is useful for research and development,as well as for comparing refractory products. The precisionshould be considered when using this test for specificationpurposes.3.4 Ruggedness tests found the following variables to berugged:temperature +5Chot spacing12 to34 in. (12.77

    10、 to 19 mm)cold spacing12 to34 in. (12.77 to 19 mm)center vs. end gripping of the barshotholdtime 10to15mincoldholdtime 10to15minoperator air speed 0 to 2 mi/h (0 to 3.2 km/h)initially cold or heated sampleslast in, first out (LIFO); or first in, first out (FIFO)removal from the furnacesawed or origi

    11、nal surface as tensile face during MOR testingbar thickness 0.96 to 1.04 in. (24.5 to 26.4 mm)4. Apparatus4.1 Furnace, capable of maintaining 1200C (2190F) withrecovery rate of less than 5 min to temperature.4.2 Abrasive Saw, to cut the test specimens.1This test method is under the jurisdiction of A

    12、STM Committee C08 onRefractories and is the direct responsibility of Subcommittee C08.02 on ThermalProperties.Current edition approved March 1, 2011. Published May 2011. Originallyapproved in 1991 as C1171 91. Last previous edition approved in 2005 asC1171 05. DOI: 10.1520/C1171-05R11.2For reference

    13、d ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Con

    14、shohocken, PA 19428-2959, United States.4.3 Dryer, capable of operating at 105C to 110C (220F to230F).4.4 Tongs or Fork, for handling hot specimens.4.5 Safety Equipment, such as gloves, face shields, andtinted safety glasses.4.6 Alumina Setter Brick, 90 %, placed 5 in. (127 mm) apartin and outside t

    15、he furnace.4.7 Strength Testing MachineAny form of standard me-chanical or hydraulic compression testing machine that con-forms to the requirements of Practices E4 may be used.4.8 Sonic Velocity MachineTest apparatus3conforming tothe section on Test Apparatus of Test Method C1419.5. Sampling5.1 The

    16、sampling shall consist of at least two bricks orshapes, or test samples made from monolithic refractories. Atleast ten test specimens shall be used. An equal number ofspecimens shall be taken from each of the bricks or shapes.5.2 Samples should be prefired to a temperature at least ashigh as the tes

    17、t temperatures.6. Test Specimens6.1 Test specimens shall be 1 6132 in. by 1 6132 in. byapproximately 6 in. (25 6 0.8 by 25 6 0.8 by approximately152 mm). Note in the report if other specimen sizes are used.Specimens cut from brick shall have at least one original bricksurface. If cut shapes, the spe

    18、cimens shall be taken parallel tothe longest dimension. For irregular shapes, all four longsurfaces of the specimens may be cut faces. Note this in thereport.6.2 Opposite faces of the specimen shall be approximatelyparallel, and adjacent faces shall be approximately perpendicu-lar.6.3 Measure the wi

    19、dth and depth of the test specimen atmid-span to the nearest 0.01 in. (0.3 mm).6.4 Specimens should be visually crack- and flaw-free.6.5 Dry specimens to constant weight at 105 to 110C (220to 230F).6.6 Carbon-containing samples must be coked according toPractice C607 and must be wrapped in foil4duri

    20、ng the cyclingprocedure. See Fig. 1 for the wrapping technique.7. Procedure7.1 Measure the sonic velocity along the length of each testspecimen according to Test Method C1419 and divide thespecimens into two equal groups on the basis of similardistributions of velocity measurements.7.2 Determine the

    21、 cold modulus of rupture (using TestMethods C133) on one group, using three point loading with a5-in. (127-mm) span and a loading rate of 175 lbf/min (778N/mm).7.3 Preheat the test furnace to the test temperature of 12006 15C (2190 6 25F); preheating is usually done the nightprior to testing. Use of

    22、 other test temperatures is allowed andmust be included as a deviation in the report.7.4 Place the test specimens from the remaining group intothe furnace spanning the setter brick and allow them to remainthere for 10 to 15 min. Then, remove the specimens from thefurnace and allow them to cool for 1

    23、0 to 15 min while spanningthe setter brick in ambient air. This is considered one full cycle.Keep the specimens12 to34 in. (12.77 to 19 mm) apart duringeach 10 to 15 min interval. Repeat for a total of five full cycles.Cycle time in the furnace starts after recovery.7.5 Measure the sonic velocity (u

    24、sing Test Method C1419)along the length of each cycled test specimen.7.6 Determine the cold modulus of rupture (using TestMethods C133) of each cycled test specimen from the secondgroup, using three point loading with a 5-in. (127-mm) spanand a loading rate of 175 lbf/min (778 N/mm) or 0.05 in./min(

    25、1.27 mm/min).8. Calculation8.1 Calculate the percent sonic velocity loss of each speci-men as follows:V02 VFV03 100where:V0= original sonic velocity of each specimen, ft/s (m/s),andVF= sonic velocity of each specimen after testing, ft/s(m/s).8.2 Calculate the percent modulus of rupture strength loss

    26、 ofeach specimen as follows:M02 MfM03 100where:M0= average modulus of rupture strength of the un-shocked specimens from the first group after testing,psi (MPa), and3A commercially available instrument, such as a James V-Meter, Pundit, orequivalent, is an acceptable test apparatus.4The sole source of

    27、 supply of the Rao-Foil heat resistant foil (item number RAAMS 5592, 24-in. (610-mm) wide, 0.002-in. (0.05-mm) thick), known to thecommittee at this time is Rolled Alloys, 125 West Sterns Rd., Temperance, MI. Ifyou are aware of alternative suppliers, please provide this information to ASTMInternatio

    28、nal Headquarters. Your comments will receive careful consideration at ameeting of the responsible technical committee1, which you may attend.FIG. 1 Foil Wrapping for Prism Shock Test (Not to Scale)C1171 05 (2011)2Mf= modulus of rupture strength of each specimen for thesecond group after testing, psi

    29、 (MPa).9. Report9.1 Report the individual sonic velocity, modulus of rupture,percent sonic velocity loss, and percent modulus of rupturestrength loss values, as well as the average percent sonicvelocity loss, the average percent modulus of rupture loss, andthe furnace temperature. Report the number

    30、of test specimensincluded in any modulus of rupture calculation. The reportshall also list any deviations from standard test requirements.10. Precision and Bias10.1 Interlaboratory Test DataAn interlaboratory round-robin test was conducted in 1988 among six laboratories onthree different types of re

    31、fractory products. Each laboratorytested two specimens from each of five samples of each ofthree different types. Each laboratory determined sonic veloc-ity and modulus of rupture strength after cycling to 1200C.The components of variance from this study expressed asstandard deviation and relative s

    32、tandard deviation are given inTable 1. Refer to Practice E691 for calculation of componentsof variance.10.2 PrecisionThe results of the interlaboratory study areshown in Table 1. The precision was found to vary based on thetype of material tested. A test result should be consideredsignificantly diff

    33、erent at a confidence level of 95 % if therepeatability or reproducibility, or both, exceeds the precisiondata listed in Table 1.10.3 BiasNo justifiable statement of bias is possible sincetrue variables cannot be established by an acceptable referencemethod.11. Keywords11.1 modulus of rupture; refra

    34、ctories; sonic velocity; ther-mal cyclingC1171 05 (2011)3ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such paten

    35、t rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited eithe

    36、r for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair he

    37、aring you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standar

    38、d may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).TABLE 1 Rel

    39、ative PrecisionModulus of RuptureBrick Type MOR Lost, % CoefficientWithin Lab, %VariationBetween Labs, %RepeatabilityInterval, Percentof AverageReproducibilityInterval, Percentof Average70 % Alumina:Specimen 1Specimen 220.6819.4459.4353.0965.3366.51166.40148.64182.92186.2360 % MgO DB:Specimen 1Speci

    40、men 259.4855.5225.7419.9229.3622.1872.0755.7882.2162.10MgOC:Specimen 1Specimen 223.5831.4946.1074.3196.8283.01129.08208.07271.09232.42Sonic VelocityBrick TypeSonic VelocityLost, %Coefficient WithinLab,%VariationBetween Labs, %RepeatabilityInterval, Percentof AverageReproducibilityInterval, Percentof Average70 % Alumina:Specimen 1Specimen 214.0313.7911.6217.3721.7423.3732.5348.6360.8766.9660 % MgO DB:Specimen 1Specimen 242.4144.1914.157.9819.1413.8539.6132.3553.5838.78MgOC:Specimen 1Specimen 222.6423.756.0838.6978.9094.7617.03108.33220.92265.33C1171 05 (2011)4


    注意事项

    本文(ASTM C1171-2005(2011) Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories《耐火材料热冲击效应和热循环效应定量测量的标准试验方法》.pdf)为本站会员(diecharacter305)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开