欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2011年全国初中数学竞赛题.doc

    • 资源ID:295349       资源大小:208.28KB        全文页数:6页
    • 资源格式: DOC        下载积分:1000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要1000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2011年全国初中数学竞赛题.doc

    1、2011年全国初中数学竞赛题 选择题 设 ,则代数式 的值为 ( ). A -6 B 24 C D 答案: A 在同一直角坐标系中,函数 ( )与 ( )的图象大致是 ( A) ( B) ( C) ( D) 答案: C 在等边三角形 ABC所在的平面内存在点 P,使 PAB、 PBC、 PAC都是等腰三角形 .请指出具有这种性质的点 P的个数( ) ( A) 1 ( B) 7 ( C) 10 ( D) 15 答案: C 若 , ,且满足 ,则 的值为 ( ). A 1 B 2 CD 答案: C 设 ,则 的整数部分等于 ( ). A 4 B 5 C 6 D 7 答案: A 填空题 如图,在 R

    2、t ABC中,斜边 AB的长为 35,正方形 CDEF内接于 ABC,且其边长为 12,则 ABC的周长为 . 答案: 如图,点 为直线 上的两点,过 两点分别作 y轴的平行线交双曲线 ( )于 两点 . 若 ,则 的值为 .答案: 一枚质地均匀的正方体骰子的六个面上的数字分别是 1, 2, 2, 3, 3, 4;另一枚质地均匀的正方体骰子的六个面上的数字分别是 1, 3, 4, 5, 6, 8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数 5的概率是 . 答案: 若关于 的方程 有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则 的取值范围是 . 答案: m4 若 a是一个完全

    3、平方数,则比 a大的最小完全平方数是 . 。 答案: 解答题 已知:不论 k 取什么实数,关于 x 的方程 ( a、 b 是常数)的根总是 x 1,试求 a、 b的值。 答案:解:把 x 1代入原方程并整理得( b 4) k 7-2a 要使等式( b 4) k 7-2a不论 k取什么实数均成立,只有 解之得 , 已知关于 的一元二次方程 的两个整数根恰好比方程的两个根都大 1,求 的值 . 答案:解:设方程 的两个根为 ,其中 为整数,且 ,则方程 的两根为 ,由题意得 , 两式相加得 , 即 , 所以 或 解得 或 又因为 所以 ;或者 , 故 ,或 29. 如图,点 为 轴正半轴上一点,

    4、两点关于 轴对称,过点 任作直线交抛物线 于 , 两点 ( 1)求证: = ; ( 2)若点 的坐标为( 0, 1),且 =60o,试求所有满足条件的直线的函数式 . 答案:解:( 1)如图,分别过点 作 轴的垂线,垂足分别为 . 设点 的坐标为( 0, ),则点 的坐标为( 0, - ) . 设直线 的函数式为 ,并设 的坐标分别为 , .由 (第 13题) 得 ,于是 ,即 . 于是 又因为 ,所以 . 因为 ,所以 , 故 = . ( 2) 设 , ,不妨设 0,由( 1)可知 = , = , = , 所以 = , = . 因为 ,所以 . 于是 ,即 , 所以 由( 1)中 ,即 ,所以 于是可求得 将 代入 ,得到点 的坐标( , ) . 再将点 的坐标代入 ,求得 所以直线 的函数式为 . 根据对称性知,所求直线 的函数式为 ,或 . 如图, ABC中, , 点 P在 ABC内,且,求 ABC的面积 答案:解:如图,作 ABQ,使得 则 ABQ ACP . 由于 ,所以相似比为 2. 于是 (第 14题) . 由 知, ,于是 所以 ,从而 于是 . 故


    注意事项

    本文(2011年全国初中数学竞赛题.doc)为本站会员(王申宇)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开