欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年高中数学第二章推理与证明2.2.1综合法和分析法课件1新人教B版选修2_2.ppt

    • 资源ID:1150482       资源大小:289.50KB        全文页数:14页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年高中数学第二章推理与证明2.2.1综合法和分析法课件1新人教B版选修2_2.ppt

    1、2.2直接证明与间接证明,演绎推理是证明数学结论、建立数学体系的重要思维过程.,数学结论、证明思路的发现,主要靠合情推理.,复习,直接证明是从命题的条件或结论出发,根据 已知的定义、公理、定理、直接推证结论的 真实性。,常用的直接证明有综合法与分析法。,例1 求证:,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法,用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.,则综合法用框图表示为:,综合法的特点:由因导果,练习:,已知 为不全相等的正数,,求证:,例2 求证:,一般地,从要证明的结论出发,逐步寻求推证过

    2、程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法,特点:执果索因.,用框图表示分析法的思考过程、特点.,练习 求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大。,例4 求证: 不是有理数。,反证法: 假设命题结论的反面成立,经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。,反证法的思维方法:正难则反,反证法的基本步骤: (1)假设命题结论不成立,即假设结论的反面成-立; (2)从这个假设出发,经过推理论证,得出矛盾; (3)从矛盾判定假设不正确,从而肯定命题的结 -论正确,矛盾: (1)与已知条件矛盾; (2)与已有公理、定理、定义矛盾; (3)自相矛盾。,应用反证法的情形:(1)直接证明困难; (2)需分成很多类进行讨论 (3)结论为“至少”、“至多”、“有无穷多个”之类命题; (4)结论为 “唯一”类命题;,练习 平面上有四个点,没有三点共线,证明:以每三点为顶点的三角形不可能都是锐角三角形有。,


    注意事项

    本文(2018年高中数学第二章推理与证明2.2.1综合法和分析法课件1新人教B版选修2_2.ppt)为本站会员(postpastor181)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开