欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年高中数学第一章导数及其应用1.3.2利用导数研究函数极值课件7新人教B版选修2_2.ppt

    • 资源ID:1150223       资源大小:489KB        全文页数:18页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年高中数学第一章导数及其应用1.3.2利用导数研究函数极值课件7新人教B版选修2_2.ppt

    1、函数的极值与导数,已知函数 f(x)=2x3-6x2+7 (1)求f(x)的单调区间,并画出其图象;,【复习与思考】,(2)函数f(x)在x=0和x=2处的函数值与这两点附近的函数值有什么关系?,知识回顾,利用函数的导数 讨论函数 的单调性,解:,分析函数 在 附近的函数值分别与 的关系.,设函数y=f(x)在x=x0及其附近有定义, (1)如果在x=x0处的函数值比它附近所有各点的函数值都大,即f(x)f(x0),则称 f(x0)是函数 y=f(x)的一个极大值.记作:y极大值=f(x0),【函数极值的定义】,(2)如果在x=x0处的函数值比它附近所有各点的函数值都小,即f(x)f(x0),

    2、则称 f(x0)是函数 y=f(x)的一个极小值.记作:y极小值=f(x0),极大值与极小值统称为极值,x0叫做函数的极值点.,观察上述图象,试指出该函数的极值点与极值,并说出哪些是极大值点,哪些是极小值点.,(1)极值是一个局部概念,反映了函数在某一点附近的大小情况;,(2)极值点是自变量的值,极值指的是函数值;,(3)函数的极大(小)值可能不止一个,而且函数的极大值未必大于极小值;,【关于极值概念的几点说明】,(4)函数的极值点一定在区间的内部,区间的端点不能成为极值点。而函数的最值既可能在区间的内部取得,也可能在区间的端点取得。,【问题探究】,函数y=f(x)在极值点的导数值为多少?在极

    3、值点附近的导数符号有什么规律?,一般地,当函数 在点 处连续时,判断 是极大(小)值的方法是:f(x0)=0,(1)如果在 附近的左侧 ,右侧 ,那么 是极大值,(2)如果在 附近的左侧 ,右侧 ,那么 是极小值,注:导数为0的点不一定是极值点,观察与思考:极值与导数有何关系?,对于可导函数, 若x0是极值点,则 f(x0)=0; 反之,若f(x0)=0,则x0不一定是极值点.,函数y=f(x)在一点的导数为0是函数在这点取极值的必要条件, 而非充分条件。,函数y=f(x)在x0取极值的充分条件是: (1)f(x0)=0,(2)在x0附近的左侧 f(x0)0(0),(1) 求导数f/(x);

    4、(2) 解方程 f/(x)=0 (3) 通过列表检查f/(x)在方程f/(x)=0的根的左右两侧的符号,进而确定函数的极值点与极值.,【求函数极值的步骤】,例、求函数 的极值,例题讲解,解:,当 时,y有极大值,并且,当 时,y有极小值,并且,例、求函数 的极值,解:,当 时,y有极小值,并且,注意:函数极值是在某一点附近的小区间内定义的,是局部性质。因此一个函数在其整个定义区间上可能有多个极大值或极小值,并对同一个函数来说,在某一点的极大值也可能小于另一点的极小值。,练习1.判断下面4个命题,其中是真命题序号为 。 可导函数必有极值; 可导函数在极值点的导数一定等于零; 函数的极小值一定小于

    5、极大值 (设极小值、极大值都存在); 函数的极小值(或极大值)不会多于一个。,2、函数y=f(x)的导数y/与函数值和极值之间的关系为( ) A、导数y/由负变正,则函数y由减变为增,且有极大值 B、导数y/由负变正,则函数y由增变为减,且有极大值 C、导数y/由正变负,则函数y由增变为减,且有极小值 D、导数y/由正变负,则函数y由增变为减,且有极大值,D,练习:,函数 在 时有极值10,则a,b的值为( ) A、 或 B、 或 C、 D、 以上都不对,C,,,注意:f/(x0)=0是函数取得极值的必要不充分条件,注意代入检验,3.,.,略解:,(1)由图像可知:,(2),注意:数形结合以及函数与方程思想的应用,


    注意事项

    本文(2018年高中数学第一章导数及其应用1.3.2利用导数研究函数极值课件7新人教B版选修2_2.ppt)为本站会员(fatcommittee260)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开