欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    版选修2_2.ppt

    • 资源ID:1145585       资源大小:813.50KB        全文页数:24页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    版选修2_2.ppt

    1、1.2.2 基本初等函数的导数公式 及导数的运算法则,课标要求 1能利用导数的四则运算法则求解导函数 2能运用复合函数的求导法则进行复合函数的求导 核心扫描 1对导数四则运算法则的考查(重点) 2复合函数的考查常在解答题中出现(重点),知识点:几个常用函数的导数,教材新知导学,思维导航 怎样用定义求函数yf(x)的导数?,x的函数,yf(g(x),yuux,y对u的导数与u对x的导数的乘积,复合函数的求导法则,牛刀小试 1.函数f(x)0的导数是( ) A0 B1 C不存在 D不确定 【解析】常数函数的导数为0. 【答案】A,2若f(x)tan x,f (x0)1,则x0的值为_.,【答案】

    2、x0k,kZ,命题方向1:导数公式的直接应用,典例探究学案,例1:求下列函数的导数 (1)ya2(a为常数); (2)yx12; (3)yx4; (4)ylgx.,方法规律总结 1.用导数的定义求导是求导数的基本方法,但运算较繁利用常用函数的导数公式,可以简化求导过程,降低运算难度 2利用导数公式求导,应根据所给问题的特征,恰当地选择求导公式,将题中函数的结构进行调整如将根式、分式转化为指数式,利用幂函数的求导公式求导,跟踪训练:导数公式的直接应用,命题方向2:求某一点处的导数,例2:,方法规律总结 求函数在某定点(点在函数曲线上)的导数的方法步骤是: (1)先求函数的导函数; (2)把对应点

    3、的横坐标代入导函数求相应的导数值,命题方向3:利用导数公式求切线方程,例3:,【解析】yex,yex, 曲线yex在点(0,1)处的切线斜率ke01. 【答案】A,跟踪训练:,命题方向4:导数的应用,例4:,方法规律总结切线方程、截距、面积的计算是对导数的几何意义、运算的综合运用,看清切点位置的同时构造方程是解题的关键,跟踪训练:,已知函数f(x)在R上满足f(x)2f(2x)x28x8, 求曲线yf(x)在点(2,f(2)处的切线方程,解:由f(x)2f(2x)x28x8,令x2x, 得f(2x)2f(x)(2x)28(2x)8, 即2f(x)f(2x)x24x4, 联立f(x)2f(2x)x28x8,得f(x)x2, f (x)2x,f (2)4,即所求切线斜率为4, 切线方程为y44(x2), 即4xy40.,课堂小结 对于函数求导,一般要遵循先化简,再求导的基本原则求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用首先,在化简时,要注意化简的等价性,避免不必要的运算失误;其次,利用导数公式求函数的导数时,一定要将函数化为八个基本初等函数中的某一个,再套用公式求导数,


    注意事项

    本文(版选修2_2.ppt)为本站会员(lawfemale396)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开