欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    (浙江专用)2020版高考数学大一轮复习课时133.2导数与函数单调性教师备用题库.docx

    • 资源ID:1084606       资源大小:20.46KB        全文页数:2页
    • 资源格式: DOCX        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (浙江专用)2020版高考数学大一轮复习课时133.2导数与函数单调性教师备用题库.docx

    1、13.2 导数与函数单调性教师专用真题精编(2018 天津,20,14 分)已知函数 f(x)=ax,g(x)=logax,其中 a1.(1)求函数 h(x)=f(x)-xln a 的单调区间;(2)若曲线 y=f(x)在点(x 1, f(x1)处的切线与曲线 y=g(x)在点(x 2,g(x2)处的切线平行,证明 x1+g(x2)=- ;2lnlnalna(3)证明当 a 时,存在直线 l,使 l 是曲线 y=f(x)的切线 ,也是曲线 y=g(x)的切线.e1e解析 本题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.

    2、考查抽象概括能力、综合分析问题和解决问题的能力.(1)由已知,h(x)=a x-xln a,有 h(x)=axln a-ln a.令 h(x)=0,解得 x=0.由 a1,可知当 x 变化时,h(x),h(x)的变化情况如表:x (-,0) 0 (0,+)h(x) - 0 +h(x) 极小值 所以函数 h(x)的单调递减区间为(-,0),单调递增区间为(0,+).(2)证明:由 f (x)=axln a,可得曲线 y=f(x)在点(x 1, f(x1) 处的切线斜率为 ln a.ax1由 g(x)= ,可得曲线 y=g(x)在点(x 2,g(x2)处的切线斜率为 .1xlna 1x2lna因为

    3、这两条切线平行,故有 ln a= ,ax1 1x2lna即 x2 (ln a)2=1.ax1两边取以 a 为底的对数,得 logax2+x1+2logaln a=0,所以 x1+g(x2)=- .2lnlnalna(3)证明:曲线 y=f(x)在点(x 1, )处的切线 l1:y- = ln a(x-x1).ax1 ax1ax1曲线 y=g(x)在点(x 2,logax2)处的切线 l2:y-logax2= (x-x2).1x2lna要证明当 a 时,存在直线 l,使 l 是曲线 y=f(x)的切线 ,也是曲线 y=g(x)的切线,只需证明当 a 时,e1e e1e2存在 x1(-,+),x

    4、2(0,+),使得 l1与 l2重合.即只需证明当 a 时,e1e方程组 有解.ax1lna= 1x2lna,ax1-x1ax1lna=logax2- 1lna, 由得 x2= ,代入,1ax1(lna)2得 -x1 ln a+x1+ + =0.ax1 ax1 1lna2lnlnalna因此,只需证明当 a 时,关于 x1的方程存在实数解.e1e设函数 u(x)=ax-xaxln a+x+ + ,1lna2lnlnalna即要证明当 a 时,函数 y=u(x)存在零点.e1eu(x)=1-(ln a)2xax,可知 x(-,0)时,u(x)0;x(0,+)时,u(x)单调递减,又 u(0)=1

    5、0,u=1- 0,使得 u(x0)=0,(1(lna)2) a1(lna)2即 1-(ln a)2x0 =0.ax0由此可得 u(x)在(-,x 0)上单调递增,在(x 0,+)上单调递减.u(x)在 x=x0处取得极大值 u(x0).因为 a ,故 ln ln a-1,所以 u(x0)= -x0 ln a+x0+ + = +x0+ 0.e1e ax0 ax0 1lna2lnlnalna 1x0(lna)2 2lnlnalna 2+2lnlnalna下面证明存在实数 t,使得 u(t) 时,有1lnau(x)(1+xln a)(1-xln a)+x+ + =-(ln a)2x2+x+1+ + ,1lna2lnlnalna 1lna2lnlnalna所以存在实数 t,使得 u(t)0.因此,当 a 时,存在 x1(-,+),使得 u(x1)=0.e1e所以,当 a 时,存在直线 l,使 l 是曲线 y=f(x)的切线, 也是曲线 y=g(x)的切线.e1e


    注意事项

    本文((浙江专用)2020版高考数学大一轮复习课时133.2导数与函数单调性教师备用题库.docx)为本站会员(figureissue185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开