欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年春八年级数学下册第1章三角形的证明1.2直角三角形第1课时直角三角形的性质与判定课件(新版)北师大版.ppt

    • 资源ID:953744       资源大小:994.50KB        全文页数:25页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年春八年级数学下册第1章三角形的证明1.2直角三角形第1课时直角三角形的性质与判定课件(新版)北师大版.ppt

    1、1.2 直角三角形,第一章 三角形的证明,第1课时 直角三角形的性质与判定,1.复习直角三角形的相关知识,归纳并掌握直角三角形的性质和判定. 2.学习并掌握勾股定理及其逆定理,能够运用其解决问题.(重点、难点),学习目标,直角三角形的两个锐角互余.,问题1 直角三角形的定义是什么?,问题2 三角形内角和的性质是什么?,有一个是直角的三角形叫直角三角形.,三角形内角和等于180.,这节课我们一起来证明直角三角形的判定与性质.,导入新课,复习引入,问题3 前面我们探究过直角三角形的哪些性质?,在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.,在直角三角形中,如果一条直角边等

    2、于斜边的一半,那么这条直角边所对的锐角等于30.,讲授新课,问题:直角三角形的两锐角互余,为什么?,问题引入,根据三角形的内角和定理,即可得到“直角三角形的两锐角互余”.,如果一个三角形中有两个锐角互余,那么这个三角形是直角三角形吗?,如图,在ABC中, A +B=90,那么ABC是直角三角形吗?,在ABC中,因为 A +B +C=180, 又A +B=90,所以C=90. 于是ABC是直角三角形.,知识回顾,勾股定理:直角三角形两条直角边的平方和等于斜边的平方.即a2+b2=c2.勾股定理在西方文献中又称为毕达哥拉斯定理.,证明欣赏,b,a,c,b,a,c,1美国第二十任总统的证法:,c,a

    3、,b,c,a,b,c,a,b,c,a,b, (a+b)2 = c2+ ,,a2+2ab+b2 = c2+2ab,,a2+b2=c2.,大正方形的面积可以表示为 ; 也可以表示为 ;,(a+b)2,c2+,2利用正方形面积拼图证明:,c, c2= +(b-a)2,,c2 =2ab+b2-2ab+a2,,c2 =a2+b2,, a2+b2=c2.,大正方形的面积可以表示为 ; 也可以表示为 ,c2,+(b-a)2,3赵爽弦图,c,a,c,a,c,b,a,a,b,b,b,如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,勾股定理反过来,怎么叙述呢?,这个命题是真命题吗?为什么?

    4、,已知:如图,在ABC中,AC2+BC2=AB2. 求证:ABC是直角三角形 分析:构造一个直角三角形与ABC全等,你能自己写出证明过程吗?,例1 证明此命题:,证明:作RtDEF,使E=90, DE=AC,FE=BC, 则DE2+EF2=DF2(勾股定理) AC2+BC2=AB2(已知), DE=AC,FE=BC(作图), AB2=DF2, AB=DF, ABCDFE(SSS) C=E=90, ABC是直角三角形,归纳总结,定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,勾股定理:直角三角形两条直角边的平方和等于斜边的平方,议一议,定理:如果一个三角形两边的平方

    5、和等于第三边的平方,那么这个三角形是直角三角形,勾股定理:直角三角形两条直角边的平方和等于斜边的平方,下面两个定理的条件和结论有什么样的关系?,一个命题的条件和结论分别是另一个命题的结论和条件,观察上面三组命题,你发现了什么?,1.两直线平行,内错角相等;,3.如果小明患了肺炎,那么他一定会发烧; 4.如果小明发烧,那么他一定患了肺炎;,2.内错角相等,两直线平行;,5.一个三角形中相等的边所对的角相等; 6.一个三角形中相等的角所对的边相等;,说出下列命题的条件和结论:,在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.,

    6、如果把其中一个命题叫做原命题,那么另一个命题就叫做它的逆命题.,上面每两个命题的条件和结论恰好互换了位置,命题“两直线平行,内错角相等”的条件和结论为: 条件为:两直线平行; 结论为:内错角相等 因此它的逆命题为:,内错角相等,两直线平行.,归纳总结,例2 指出下列命题的条件和结论,并说出它们的逆命题.,(1)如果一个三角形是直角三角形,那么它的两个锐角互余.,条件:一个三角形是直角三角形.,结论:它的两个锐角互余.,逆命题:如果一个三角形的两个锐角互余,那么这个三角形是直角三角形.,(2)等边三角形的每个角都等于60.,条件:一个三角形是等边三角形;,结论:它的每个角都等于60.,逆命题:如

    7、果一个三角形的每个角都等于60,那么这个三角形是等边三角形.,(3)全等三角形的对应角相等.,条件:两个三角形是全等三角形.,结论:它们的对应角相等.,逆命题:如果两个三角形的对应角相等,那么这两个三角形全等.,每一个命题都有逆命题,只要将原命题的条件改成结论,并将结论改成条件,便可得到原命题的逆命题但是原命题正确,它的逆命题未必正确例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题,知识归纳,例3 举例说明下列命题的逆命题是假命题.,(2)如果两个角都是直角,那么这两个角相等.,逆命题:如果两个角相等,那么这两个角是直角.,例如10能被5整除,但它的个位数是0.,(1)

    8、如果一个整数的个位数字是5 ,那么这个整数能被5整除.,逆命题:如果一个整数能被5整除,那么这个整数的个位数字是5.,例如60= 60,但这两个角不是直角.,如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.,注意1:逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题.,注意2:不是所有的定理都有逆定理.,知识归纳,当堂练习,1.如图是一张直角三角形的纸片,两直角边AC6 cm,BC8 cm,现将ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为( ),A.4 cm B.5 cm C.6 cm D.10 cm,【解析】RtABC

    9、中,AB2=AC2+BC2=100, AB=10cm.BE= AB=5cm.,B,2.在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明.,(1)同旁内角互补,两直线平行.,逆命题:两直线平行,同旁内角互补.,真,(2)有两个角相等的三角形是等腰三角形.,逆命题:如果一个三角形是等腰三角形,那么它有两个角相等.,真,直角三角形,角的性质,课堂小结,边的性质,勾股定理:直角三角形两条直角边的平方和等于斜边的平方; 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,定理1:直角三角形的两个锐角互余; 定理2:有两个角互余的三角形是直角三角形.,互逆命题与互逆定理,互逆命题,互逆定理,一个定理的逆命题也是定理,这两个定理叫做互逆定理,第一个命题的条件是第二个命题的结论; 第一个命题的结论是第二个命题的条件.,概念,概念,


    注意事项

    本文(2019年春八年级数学下册第1章三角形的证明1.2直角三角形第1课时直角三角形的性质与判定课件(新版)北师大版.ppt)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开