欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年春八年级数学下册第4章因式分解4.3公式法第1课时平方差公式课件(新版)北师大版.ppt

    • 资源ID:952279       资源大小:775.50KB        全文页数:22页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年春八年级数学下册第4章因式分解4.3公式法第1课时平方差公式课件(新版)北师大版.ppt

    1、4.3 公式法,第四章 因式分解,第1课时 平方差公式,1.探索并运用平方差公式进行因式分解,体会转化 思想(重点) 2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点),导入新课,情境引入,如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?,a2- b2=(a+b)(a-b),讲授新课,想一想:多项式a2-b2有什么特点?你能将它分解因式吗?,是a,b两数的平方差的形式,两个数的平方差,等于这两个数的和与这两个数的差的乘积.,平方差公式:,辨一辨:下列多项式能否用平方差公式来分解因式,为什么?,两数是平方,

    2、减号在中央,(1)x2+y2,(2)x2-y2,(3)-x2-y2,-(x2+y2),y2-x2,(4)-x2+y2,(5)x2-25y2,(x+5y)(x-5y),(6)m2-1,(m+1)(m-1),例1 分解因式:,a,a,b,b,a2 - b2 =,解:(1)原式=,2x,3,2x,2x,3,3,(2)原式,整体思想,a,b,典例精析,方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.,分解因式: (1)(ab)24a2; (2)9(mn)2(mn)2.,针对训练,(2m4n)(4m2n),解:(1)原式(ab2a

    3、)(ab2a),(ba)(3ab);,(2)原式(3m3nmn)(3m3nmn),4(m2n)(2mn),当场编题,考考你!,例2 分解因式:,解:(1)原式(x2)2-(y2)2,(x2+y2)(x2-y2),(x2+y2)(x+y)(x-y);,(2)原式ab(a2-1),ab(a+1)(a-1).,方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止,分解因式: (1)5m2a45m2b4; (2)a24b2a2b.,针对训练,(a2b)(a2b1).,5m2(a2b2)(ab)(ab);,解:(1)原式5m2(a4b

    4、4),5m2(a2b2)(a2b2),(2)原式(a24b2)(a2b),(a2b)(a2b)(a2b),例3 已知x2y22,xy1,求x-y,x,y的值,xy2.,解:x2y2(xy)(xy)2,,xy1,,联立组成二元一次方程组,,解得,方法总结:在与x2y2,xy有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.,例4 计算下列各题: (1)1012992; (2)53.524-46.524.,解:(1)原式(10199)(10199)400;,(2)原式4(53.5246.52),=4(53.546.5)(53.546.5),41007=2800.,

    5、方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.,例5 求证:当n为整数时,多项式(2n+1)2-(2n-1)2一定能被8整除,即多项式(2n+1)2-(2n-1)2一定能被8整除,证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n2=8n,,n为整数,,8n被8整除,,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除,1.下列多项式中能用平方差公式分解因式的是( ) Aa2(b)2 B5m220mn Cx2y2 Dx29,当堂练习,D,2.分解因式(2x+3)2 -x2的结果是( ) A3(x2+4x+3) B

    6、3(x2+2x+3) C(3x+3)(x+3) D3(x+1)(x+3),D,3.若a+b=3,a-b=7,则b2-a2的值为( ),A-21 B21 C-10 D10,A,4.把下列各式分解因式: (1) 16a2-9b2=_; (2) (a+b)2-(a-b)2=_; (3) 9xy3-36x3y=_; (4) -a4+16=_.,(4a+3b)(4a-3b),4ab,9xy(y+2x)(y-2x),(4+a2)(2+a)(2-a),5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值是_.,4,6.已知4m+n=40,2m-3n=5求(m+2n)2-(3m-n)

    7、2的值,原式=-405=-200,解:原式=(m+2n+3m-n)(m+2n-3m+n),=(4m+n)(3n-2m),=-(4m+n)(2m-3n),,当4m+n=40,2m-3n=5时,,7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积,解:根据题意,得,6.8241.62,6.82 (21.6)2,6.823.22,(6.83.2)(6.8 3.2),103.6,36 (cm2),答:剩余部分的面积为36 cm2.,8. (1)992-1能否被100整除吗?,解:(1) 992-1=(99+1)(99-1)=10098,,n为整数 (2n+1)2-25能被4整除.,(2)n为整数,(2n+1)2-25能否被4整除?,992-1能否被100整除.,(2)原式=(2n+1+5)(2n+1-5),=(2n+6)(2n-4),=2(n+3) 2(n-2)=4(n+3)(n-2).,课堂小结,平方差公式分解因式,公式,a2-b2=(a+b)(a-b),步骤,一提:公因式; 二套:公式; 三查:多项式的因式分解有没有分解到不能再分解为止.,


    注意事项

    本文(2019年春八年级数学下册第4章因式分解4.3公式法第1课时平方差公式课件(新版)北师大版.ppt)为本站会员(confusegate185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开