欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年秋九年级数学上册第1章二次函数专题训练(一)求二次函数的表达式同步练习(新版)浙教版.docx

    • 资源ID:924968       资源大小:219.44KB        全文页数:10页
    • 资源格式: DOCX        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年秋九年级数学上册第1章二次函数专题训练(一)求二次函数的表达式同步练习(新版)浙教版.docx

    1、1专题训练(一) 求二次函数的表达式 类型一 设一般式求二次函数表达式若给出抛物线上任意三点,通常可设一般式 y ax2 bx c(a0)1如图 1ZT1,二次函数 y x2 bx c 的图象过点 B(0,2),它与反比例函数y 的图象相交于点 A(m,4),则这个二次函数的表达式为( )8x图 1ZT1A y x2 x2B y x2 x2C y x2 x2D y x2 x22二次函数 y ax2 bx c 的变量 x 与变量 y 的部分对应值如下表:x 3 2 1 0 1 5 y 7 0 5 8 9 7 (1)求此二次函数的表达式;(2)写出该抛物线的顶点坐标和对称轴23已知:在平面直角坐标

    2、系 xOy 中,抛物线 y ax2 bx c 经过点 A(3,0),B(2,3), C(0,3)(1)求抛物线的函数表达式;(2)设 D 是抛物线上的一点,且点 D 的横坐标为2,求 AOD 的面积 类型二 设顶点式求二次函数表达式若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式: y a(x m)2 k(a0),其中点( m, k)为抛物线的顶点坐标,对称轴为直线 x m.4若二次函数的图象的顶点坐标为(2,1),且过点(0,3),则该二次函数的表达式是( )A y( x2) 21 B y (x2) 2112C y( x2) 21 D y (x2) 21125已知二次函数的图象经过点(4

    3、,3),并且当 x3 时,有最大值 4.求该二次函数的表达式36已知抛物线 y ax2 bx c 与 x 轴交于点 A(3,0),对称轴为直线 x1,顶点M 到 x 轴的距离为 2,求此抛物线的函数表达式7设抛物线 y ax2 bx c(a0)过 A(0,2), B(4,3), C 三点,其中点 C 在直线x2 上,且点 C 到抛物线的对称轴的距离为 1,求抛物线的函数表达式8如图 1ZT2,二次函数 y ax2 bx c(a0)的图象交 x 轴于 A, B 两点,交 y轴于点 D,点 B 的坐标为(3,0),顶点 C 的坐标为(1,4)4(1)求二次函数的表达式和直线 BD 的表达式;(2)

    4、P 是直线 BD 上的一个动点,过点 P 作 x 轴的垂线,交抛物线于点 M,当点 P 在第一象限时,求线段 PM 长的最大值图 1ZT2 类型三 设交点式求二次函数表达式若给出抛物线与 x 轴的交点,通常可设交点式: y a(x x1)(x x2)(a0),其中x1, x2是抛物线与 x 轴的交点的横坐标59已知抛物线 y ax2 bx c 与 x 轴的两个交点坐标为(1,0),(3,0),其形状大小、开口方向均与抛物线 y2 x2相同,则该抛物线的函数表达式为( )A y2 x2 x3 B y2 x24 x5C y2 x24 x8 D y2 x24 x610已知二次函数 y ax2 bx

    5、c 的图象过 A(1,4), B(5,0)两点,它的对称轴为直线 x2,那么这个二次函数的表达式是_112017百色经过 A(4,0), B(2,0), C(0,3)三点的抛物线的函数表达式是_12已知二次函数的图象经过点 A(1,0), B(3,0), C(4,10),求该二次函数的表达式13已知二次函数的图象经过点(3,8),对称轴为直线 x2,抛物线与 x 轴的两个交点之间的距离为 6.求该二次函数的表达式614已知一条抛物线经过点 A(1,0), B(0,5),且抛物线的对称轴为直线 x2,求该抛物线的函数表达式7详解详析专题训练(一) 求二次函数的表达式1解析A 把 A(m,4)代入

    6、 y ,得 m2,A(2,4)把 A(2,4), 8xB(0,2)代入 yx 2bxc,得 解得4 2b c 4,c 2, ) b 1,c 2, )二次函数的表达式为 yx 2x2.2解:(1)把(2,0),(1,5),(0,8)代入 yax 2bxc,得解得4a 2b c 0,a b c 5,c 8, ) a 1,b 2,c 8, )二次函数的表达式为 yx 22x8.(2)yx 22x8(x1) 29,该抛物线的顶点坐标为(1,9),对称轴为直线 x1.3解:(1)把 A(3,0),B(2,3),C(0,3)代入 yax 2bxc,得解得9a 3b c 0,4a 2b c 3,c 3, )

    7、 a 1,b 2,c 3, )则抛物线的函数表达式为 yx 22x3.(2)把 x2 代入抛物线的表达式,得 y5,即 D(2,5)A(3,0),OA3,S AOD 35 .12 1524解析C 设这个二次函数的表达式为 ya(xh) 2k.二次函数的图象的顶点坐标为(2,1),二次函数的表达式为 ya(x2) 21.把(0,3)代入,得 3(02) 2a1,解得 a1,y(x2) 21.故选 C.85解:由题意可知抛物线的顶点坐标为(3,4)设二次函数的表达式为 ya(x3) 24.把(4,3)代入,得 a43,a7,二次函数的表达式为 y7(x3) 24.6解:由题意得该抛物线的顶点坐标为

    8、(1,2)或(1,2)(1)当顶点 M 的坐标为(1,2)时,可设该抛物线的函数表达式为 ya(x1) 22.把 A(3,0)代入,得 4a20,解得 a ,12该抛物线的函数表达式为 y (x1) 22;12(2)当顶点 M 的坐标为(1,2)时,可设该抛物线的函数表达式为 ya(x1) 22.把 A(3,0)代入,得 4a20,a ,12该抛物线的函数表达式为 y (x1) 22.12综上所述,该抛物线的函数表达式为 y (x1) 22 或 y (x1) 22.12 127解:由题意,得抛物线的对称轴为直线 x1 或直线 x3.设抛物线的函数表达式为 ya(x1) 2k 或 ya(x3)

    9、2k.抛物线过点 A(0,2),B(4,3), 或a k 2,9a k 3) 9a k 2,a k 3, )解得 或a 18,k 158) a 18,k 258, )y (x1) 2 x2 x2 或 y (x3) 2 x2 x2.18 158 18 14 18 258 18 348解:(1)设二次函数的表达式为 ya(x1) 24.把点 B(3,0)代入,得 0(31) 2a4,解得 a1.二次函数的表达式为 y(x1) 24x 22x3.9令 x0,则 y3,D(0,3)设直线 BD 的表达式为 ykxb,把点 B(3,0),D(0,3)代入,得 0 3k b,3 b, )解得 k 1,b

    10、3. )直线 BD 的表达式为 yx3.(2)设点 P 的横坐标为 a,则 P(a,a3),M(a,a 22a3),PMy My Pa 22a3(a3)a 23a .(a32)2 94当 a 时,线段 PM 长的最大值是 .32 949答案D10答案 y x22x12 52解析抛物线的对称轴为直线 x2,且经过点(5,0),根据抛物线的对称性,图象经过另一点(1,0)设抛物线的交点式 ya(x1)(x5)把(1,4)代入,得 4(11)(15)a,解得 a ,12y (x1)(x5),12即 y x22x .12 5211答案 y (x4)(x2) 38解析 设抛物线的函数表达式为 ya(x4

    11、)(x2),把 C(0,3)代入,得3(04)(02)a,解得 a ,故 y (x4)(x2)38 3812解:设二次函数的表达式为 ya(x1)(x3)把 C(4,10)代入,得 5a10,a2,10y2(x1)(x3),即 y2x 24x6.13解:由题意可知抛物线与 x 轴的两个交点的坐标为(1,0)和(5,0)设二次函数的表达式为 ya(x1)(x5),把(3,8)代入,得8a8,a1,y(x1)(x5),即 yx 24x5.14解:抛物线的对称轴是直线 x2,且经过点(1,0),由抛物线的对称性可知抛物线还经过点(5,0)设抛物线的函数表达式为 ya(x1)(x5)(a0),把 B(0,5)代入,得55a,解得 a1.抛物线的函数表达式为 y(x1)(x5)x 24x5.


    注意事项

    本文(2018年秋九年级数学上册第1章二次函数专题训练(一)求二次函数的表达式同步练习(新版)浙教版.docx)为本站会员(dealItalian200)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开