欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019高考数学二轮复习课时跟踪检测(二十五)函数与导数(大题练)理.doc

    • 资源ID:921506       资源大小:81.50KB        全文页数:8页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高考数学二轮复习课时跟踪检测(二十五)函数与导数(大题练)理.doc

    1、1课时跟踪检测(二十五) 函数与导数(大题练)A 卷大题保分练1(2018贵阳模拟)已知函数 f(x)( x1)e x1, g(x)e x ax1(其中 aR,e为自然对数的底数,e2.718 28)(1)求证:函数 f(x)有唯一零点;(2)若曲线 g(x)e x ax1 的一条切线方程是 y2 x,求实数 a 的值解:(1)证明:因为 f(x)( x1)e x1( xR),所以 f( x) xex,由 f( x) xex0,得 x0, f( x) xex0 时, x0; f( x) xex1,当 x(1, x0)时,恒有 f(x) 2 x k(x1)成立,求 k 的取值x22 12范围解:

    2、(1)由已知可得 f(x)的定义域为(0,) f( x) a, f(1)1 a0, a1, f( x) 1 ,1x 1x 1 xx令 f( x)0 得 01, f(x)的单调递增区间为(0,1),单调递减区间为(1,)(2)不等式 f(x) 2 x k(x1)可化为 ln x x k(x1),x22 12 x22 12令 g(x)ln x x k(x1),x22 12则 g( x) x1 k ,1x x2 1 k x 1x令 h(x) x2(1 k)x1,则 h(x)的对称轴为直线 x ,1 k22当 1,即 k1 时,易知 h(x)在(1,)上单调递减,1 k2 x(1,)时, h(x)0,

    3、存在 x01,使得 x(1, x0)时, h(x)0,即 g( x)0, g(x)在(1, x0)上单调递增, g(x)g(1)0 恒成立,符合题意当 1,即 k1,使得 h(x)在(1, x0)上单调递增,1 k2 h(x)h(1)1 k0, g( x)0, g(x)在(1, x0)上单调递增, g(x)g(1)0 恒成立,符合题意综上, k 的取值范围是(,1)3(2018合肥模拟)已知函数 f(x)ln x (aR)2ax 1(1)求函数 f(x)的单调区间;(2)当 a1 时,求证: f(x) .x 12解:(1) f(x)的定义域为(0,), f( x) .x2 2 1 a x 1x

    4、 x 1 2考虑 y x22(1 a)x1, x0.当 0,即 0 a2 时, f( x)0, f(x)在(0,)上单调递增当 0,即 a2 或 a0 恒成立,此时 f(x)在(0,)上单调递增;若 a2,则 a1 a1 0,a2 2a a2 2a由 f( x)0,得 0a1 ,则 f(x)在(0, a1a2 2a a2 2a)和( a1 ,)上单调递增a2 2a a2 2a由 f( x)2 时, f(x)的单调递增区间为(0, a1 ),( a1 ,),单a2 2a a2 2a3调递减区间为( a1 , a1 )a2 2a a2 2a(2)证明:当 a1 时, f(x)ln x .2x 1令

    5、 g(x) f(x) ln x (x0),x 12 2x 1 x 12则 g( x) .1x 2 x 1 2 12 2 x x32x x 1 2 x 1 x2 x 22x x 1 2当 x1 时, g( x)0, g(x)在(0,1)上单调递增,在(1,)上单调递减,即当 x1 时, g(x)取得最大值,故 g(x) g(1)0,即 f(x) 成立,得证x 124(2018全国卷)已知函数 f(x)(2 x ax2)ln(1 x)2 x.(1)若 a0,证明:当10 时, f(x)0;(2)若 x0 是 f(x)的极大值点,求 a.解:(1)证明:当 a0 时, f(x)(2 x)ln(1 x

    6、)2 x, f( x)ln(1 x) .x1 x设函数 g(x)ln(1 x) ,x1 x则 g( x) .x 1 x 2当10 时, g( x)0,故当 x1 时, g(x) g(0)0,且仅当 x0 时, g(x)0,从而 f( x)0,且仅当 x0 时, f( x)0.所以 f(x)在(1,)上单调递增又 f(0)0,故当10 时, f(x)0.(2)若 a0,由(1)知,当 x0 时, f(x)(2 x)ln(1 x)2 x0 f(0),这与 x0 是 f(x)的极大值点矛盾若 a0,1, 1|a|故 h(x)与 f(x)符号相同4又 h(0) f(0)0,故 x0 是 f(x)的极大

    7、值点,当且仅当 x0 是 h(x)的极大值点h( x) 11 x 2 2 x ax2 2x 1 2ax 2 x ax2 2 .x2 a2x2 4ax 6a 1 x 1 ax2 x 2 2若 6a10,则当 00,1, 1|a|故 x0 不是 h(x)的极大值点若 6a10;当 x(0,1)时, h( x)4.解:(1) f( x) (x0),x tx2当 t0 时, f( x)0, f(x)在(0,)上单调递增, f(x)无最值;当 t0 时,由 f( x)0,得 xt, f(x)在(0, t)上单调递减,在( t,)上单调递增,故 f(x)在 x t 处取得最小值,最小值为 f(t)ln t

    8、1 s,无最大值(2) f(x)恰有两个零点 x1, x2(01,则 ln t , x1 ,x2x1 2 t 1tx1 2 t 1tln t故 x1 x2 x1(t1) ,2 t2 1tln t x1 x24 ,2(t2 1t 2ln t)ln t记函数 h(t) 2ln t,t2 1t h( t) 0, t 1 2t2 h(t)在(1,)上单调递增, t1, h(t)h(1)0,又 t 1,ln t0,故 x1 x24 成立x2x12(2019 届高三福州四校联考)已知函数 f(x) axln x, F(x)e x ax,其中x0, a0,1x ax 1x a0,即 F(x)在(0,)上单调

    9、递增,不合题意,当 a0,得 xln( a),由 F( x)e2时, p( x)0,当 00, g( x)0, g(x)单调递减,(0, 1a)当 x 时, ax10)(1)若函数 f(x)有且只有一个零点,求实数 k 的值;(2)证明:当 nN *时,1 ln(n1)12 13 1n解:(1)法一: f(x) kxln x1, f( x) k (x0, k0),1x kx 1x当 x 时, f( x)0;当 0 时, f( x)0.1k 1k 1k f(x)在 上单调递减,在 上单调递增,(0,1k) (1k, ) f(x)min f ln k,(1k) f(x)有且只有一个零点,ln k0

    10、, k1.法二:由题意知方程 kxln x10 仅有一个实根,由 kxln x10 得 k (x0),ln x 1x7令 g(x) (x0), g( x) ,ln x 1x ln xx2当 x1 时, g( x)0;当 00;当 x1 时, g( x)ln ,n 1n 1n n 1n1 ln ln ln ln( n1),12 13 1n 21 32 n 1n故 1 ln(n1)12 13 1n4(2018郑州模拟)已知函数 f(x) (aR),曲线 y f(x)在点(1, f(x)处的ln xx a切线与直线 x y10 垂直(1)试比较 2 0172 018与 2 0182 017的大小,并

    11、说明理由;(2)若函数 g(x) f(x) k 有两个不同的零点 x1, x2,证明: x1x2e2.解:(1) 2017 2 0182 0182 017.理由如下:依题意得, f( x) ,x ax ln x x a 2因为函数 f(x)在 x1 处有意义,所以 a1.所以 f(1) ,1 a 1 a 2 11 a又由过点(1, f(1)的切线与直线 x y10 垂直可得, f(1)1,即 1,解11 a得 a0.此时 f(x) , f( x) ,ln xx 1 ln xx28令 f( x)0,即 1ln x0,解得 0e.所以 f(x)的单调递增区间为(0,e),单调递减区间为(e,)所以

    12、 f(2 017)f(2 018),即 ,ln 2 0172 017 ln 2 0182 018则 2 018ln 2 0172 017ln 2 018,所以 2 0172 0182 0182 017.(2)证明:不妨设 x1x20,因为 g(x1) g(x2)0,所以 ln x1 kx10,ln x2 kx20.可得 ln x1ln x2 k(x1 x2),ln x1ln x2 k(x1 x2),要证 x1x2e2,即证 ln x1ln x22,也就是 k(x1 x2)2,因为 k ,所以只需证 ,ln x1 ln x2x1 x2 ln x1 ln x2x1 x2 2x1 x2即 ln ,令 t,则 t1,即证 ln t .x1x22 x1 x2x1 x2 x1x2 2 t 1t 1令 h(t)ln t (t1)2 t 1t 1由 h( t) 0 得函数 h(t)在(1,)上是增函数,1t 4 t 1 2 t 1 2t t 1 2所以 h(t)h(1)0,即 ln t .2 t 1t 1所以 x1x2e2.


    注意事项

    本文(2019高考数学二轮复习课时跟踪检测(二十五)函数与导数(大题练)理.doc)为本站会员(roleaisle130)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开