欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA-TP-1652-1980 Measured and predicted shock shapes and aerodynamic coefficients for blunted cones at incidence in air at Mach 5 9《当马赫数为5 9时空气中发生率的钝圆锥测量和预测的振动形状和空气动力系数》.pdf

    • 资源ID:836957       资源大小:2.64MB        全文页数:76页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA-TP-1652-1980 Measured and predicted shock shapes and aerodynamic coefficients for blunted cones at incidence in air at Mach 5 9《当马赫数为5 9时空气中发生率的钝圆锥测量和预测的振动形状和空气动力系数》.pdf

    1、hNASA-TP-1652 19800015109 !NASA Technical Paper 1652 iMeasured and Predicted ShockShapes and AerodynamicCoefficients for Blunted Conesat Incidence in Air at Mach 5.9Robert L. Calloway and Nancy H. WhiteMAY 1980-“ 1 ! iI._A_Q1rY ,_r_: _“H CENTERLIBRARY, iqASAHAMPTON VIRGIrqlA1/L5/%Provided by IHSNot

    2、for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NASA Technical Paper 1652Measured and Predicted ShockShapes and AerodynamicCoefficients for Blunted Conesat Incidence in Ai

    3、r at Mach 5.9Robert L. Calloway and Nancy H. WhiteLangley Research CenterHantpton, VirginiaNational Aeronauticsand Space AdministrationScientific and TechnicalInformationOffice1980Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for

    4、 ResaleNo reproduction or networking permitted without license from IHS-,-,-SUMMARYExperimentalvaluesof shockshapes (anglesof attack e of 0O and 10)and staticaerodynamiccoefficients(_= -4 to 12) for sharpand sphericallybluntedconeshaving cone half-anglesof 30, 45, 60, and 70 and nose-bluntnessratios

    5、of 0, 0.25,and 0.50 are presented. Shockshapeswere alsomeasuredat e = 0 by using a flat-facedcylinder(90 cone)and a hemispher-icallybluntedcylinder (sphere). All testswere conductedin air (ratioofspecificheats y of 7/5) at a free-streamMach numberof 5.9 and a unit free-streamReynoldsnumberof 2.80 10

    6、6per meter. Comparisonsbetweenmeasuredvalues andpredictedvalueswere made by usingseveralnumericaland simpleengineeringmethods.Presentresultsare generallyin excellentagreementwithmeasuredresultsfrom othersourcesand with the predictedvalues from severalnumericalmethods.A modifiedNewtonianmethodprovide

    7、dconsistentlypoor agreementwithmeasuredaxial-forcecoefficientsandwith normal-forceandpitching-momentcoefficientsfor the 60 cone. Measuredstaticaerodynamiccoefficientsfor the largehalf-angleconesshow that theeffectsof nose-bluntnessratiosare small, indicat-ing thelack of importanceof thisparameterin

    8、the aerodynamicdesignof entryprobeshavinglargehalf-anglecone forebodies.INTRODUCTIONThe sphericallybluntedcone has been usedas the forebodyshapeof theplanetaryentryprobefor both theViking ProjectandPioneerVenus, and itwill be used againfor theupcomingProjectGalileo (JupiterProbe). The finalaero-ther

    9、modynamicdesignfor theseplanetaryentryprobesmust be determinedby analyticaltechniquesbecausethe entryenvironmentof otherplanetscannotbe simulatedby usingEarth-basedexperimentalfacilities. Experimentalresultsare needed,though,to validatethe theoreticalmethodsand to provideinputsfor empiricaltechnique

    10、sor correlationprocedures(ref.1). Throughproperuseof bothmeasuredand predictedresults,futureplanetaryprobes can bedesignedwith less conservatismso thatmore payloadcanbe accommodated.Resultsfrom experimentalstudiesconductedon sharpand sphericallybluntedconesin air at supersonicandhypersonicMach numbe

    11、rsare extensive.Most of the earlywork (aerodynamiccoefficientsand pressuremeasurements)was conductedon coneswith smallhalf-angles(8_ 40) becausetheywerecandidatesfor ballisticreentryintoour own atmosphere. References2 and 3provide,respectively,summarytablesand a compilationof themajor body ofdata on

    12、 conesup throughthemid-960s. Particularexamplesof someof theearlyexperimentalwork are given in references4 to 11. In laterwork(refs.12 to 19), coneswith largerhalf-angleswere studiedwith increasinginterestas candidateconfigurationsfor planetaryentryprobesand for basicresearchin areasforwhich datawer

    13、e lacking.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-The purposeof this reportis to presenta portionof the resultsfrom astudywhich is designedto enrich the hypersonicdata base forentry-typegeom-etriesover a rangeof anglesof attack,ratiosof speci

    14、ficheats,andMachnumbers. The presentresults (andthoseof ref. 20) are part of a systematicstudyof aerodynamiccoefficientsand shockshapesat anglesof attackwhichare valuablefor validationof predictionmethodsand completionof thehyper-sonicdata base. Experimentalresultspresentedhereinare for sharpandsphe

    15、ricallybluntedconeshaving cone half-anglesof 30, 45, 60, and 70and nose-bluntnessratiosof 0, 0.25,and 0.50. These configurationsweretestedin theLangley20-InchMach 6 Tunnel at a Mach numberof 5.9. Measure-ments includeshockshapesat _ = 0 and 0 and staticaerodynamiccoeffi-cients takenat 2 incrementsfo

    16、r e = -4 to 2. Shock shapesat 0 angleof attackfor a 90 cone and fora spherewere obtainedby usinga flat-facedcylindermodel and a hemisphericallybluntedcylindermodel, respectively.Comparisonsbetweenmeasuredvaluesand predictedvaluesaremade by usingseveralnumericalmethods and simpleengineeringmethods. A

    17、lso, experimentaldata from references21 to 26 are comparedwith thepresentresults.SYMBOLSAxial forceCA axial-forcecoefficient,PitchingmomentCm pitching-momentcoefficient, qSdNormal forceCN normal-forcecoefficient,Cp,max Newtonianpressurecoefficientd model base diameter,cmZ model length,cmMz localMach

    18、 numberM_ free-streamMach numberPt stagnationpressure,kPaq_ free-streamdynamicpressure,kPaRoo,d free-streamReynoldsnumberbasedon drb model base radius,cmrn modelnose radius,cm2Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-rn/rb nose-bluntnessratioS

    19、 model base area,cm2Tt stagnationtemperature,KV_ free-streamvelocity,m/secx,r cylindricalcoordinates(fig.1(a)angleof attack,degy ratioof specificheats_* boundary-layerdisplacementthickness,cmdistancebetweenmodel surfaceand shockwave, measuredparalleltomodel axis,cm (fig.(a) cone half-angle,degdet mi

    20、nimumcone half-anglefor shockdetachment,degFACILITYANDTESTOONDITIONSShockshapesand staticaerodynamiccoefficientswere obtainedfrom flowvisualizationand forceandmoment testsconductedin the Langley20-InchMach 6 Tunnel. Operation,flowconditions,and detailsof force testinginthisfacilityaredescribed in re

    21、ference27. All testswere conductedat thefollowingflowconditions:M_= 5.9Pt = 276kPaTt = 431 KR_,d = 0.42 06 (cones)R_,d = 0.07x 06 (cylinders)MODELSFigure1(a) providesa generalplanformview and thedimensionsof the2 cone models tested. Thesemodelswere constructedfrom aluminumand have3Provided by IHSNot

    22、 for ResaleNo reproduction or networking permitted without license from IHS-,-,-base diametersof approximately5.08 cm. Cone half-anglesof 30, 45, 60,and 70 were examined,and the nose-bluntnessratios (0,0.25,and 0.50)werevariedfor each cone half-angle. A flat-facedcylinderanda hemisphericallybluntedc

    23、ylinder,each with base diametersof 3.81cm (fig.(b),were testedat _ = 0 to provideshockshapesfor a 90 cone and a sphere,respectively.A photographof the cone models testedis shown in figure2. The taperedcylindricalsectionextendingbehindthemodel forebodywasdesigned to housethe strain-gagebalance. These

    24、modelswere also used for theexperimentaltestsin heliumdescribedin reference20.TEST METHODSFlow visualizationand forceand moment testswere conductedsimulta-neously. Schlierenphotographswere used to obtain themeasuredshockloca-tionsat _ = 0 andat _ = 10. The shocklocationswere read manuallyfromphotogr

    25、aphssimilarto the one shownin figure3. The error in thesemeasure-ments is estimatedto be .5percentof rb,which is aboutthe indicatedthicknessof theshock wave in the photograph. Shock-layerthicknessesweremeasuredparallelto themodel axis (seefig. (a)and are presentedin tableI. For valuesof r/rb greater

    26、than .0, A wasmeasuredfrom animaginaryextensionof theplanedefinedby thebase of themodel.Aerodynamicforceand moment testswereperformedwith themodels mountedon a sting-supported,five-componentstrain-gagebalance (norolling-momentcomponent). The straightstingwas attachedto the angle-of-attackmechanisman

    27、d datawere obtainedin 2 incrementsof angleof attackfrom -4 to 2.The angleof attackwas setopticallyby usinga point lightsourceadjacenttothe test sectionand a smalllens-prismmountedon the taperedcylindricalsec-tion extendingbehind themodel. The imageof the sourcewas reflectedby theprismand focusedby t

    28、he lens onto a boardwhichwas calibratedto indicatetheangleof attack. Data were obtainedduringthe test runs with themodel setatdiscreteangles of attack. The accuracyof determiningthe angleof attack inthismanner is estimatedto be 0.25. All testswere conductedat a sideslipangleof 0, and no base pressur

    29、eswere measured.The referencearea for themodelswas thebase area S and the referencelengthwas thebase diameter d. All pitching-momentdata were reducedaboutthe actualnose of each model. The estimateduncertaintiesin themeasuredstaticaerodynamiccoefficientsbasedon a balanceaccuracyof 0.5percentofthe des

    30、ignloadsare as follows:dCN . 0.020dCA . 0.00Acm . o.oloThe measuredstaticaerodynamiccoefficientsare presentedin tableII.4Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-PREDICTIONMETHODSIn termsof theMach numberbetweenthe shockwave and the body MZ, s

    31、ev-eral flow conditionswill occurfor the rangeof cone half-anglesand nose-bluntnessratiostested. For u = 0, the flow conditionsthat can occurareillustratedin figure4. For the sharpconewith det,therewill be subsonicflow over the entirebodywith the sonicline (locusof pointswhere Mz = 1.0) extendingfro

    32、m the shockwave to the base of the body,as shownin figure4(b). For the sharpconethere is a limitedrangeof cone half-angleswhichcausesa regionof sub-sonicflow adjacentto the surface (notillustrated).The size of thisregionincreasesas approaches edet,but the shockwave remainsattached.For air at M_= 6.0

    33、 this occursbetween = 53 and 0 = det = 55.4(ref.28).When the cone is sphericallybluntedand 0det (fig.4(d),subsonicflow occursover theentirebody (regardlessof the nose bluntness),and the flow conditionsaresimilarto thoseof figure4(b). Themost complicatedflow conditionsoccurwhen thereis subsonicflow o

    34、ver the nose but is not smallenoughto allowthe flow to becomecompletelysupersonicaft of the sphere-conejunctionandnot largeenoughto producetotalsubsonicflow in theshocklayer (fig.4(e).The sonicline can assumeseveralshapesfor valuesof 0 in this range,includingtheone shownin figure4(e). For anglesof a

    35、ttackother than 0,combinationsof the flowconditionsshown in figure4 can occursimultaneouslyin differentmeridionalplanes,dependingon the combinationof cone half-angle,nose bluntness,and angleof attack.A numberof numericalmethodswere used to predictshockshapesand pres-sure coefficientsfor the configur

    36、ationsstudied. Thesemethodswere used pri-marily becauseof theiraccessibilityand becausethey coveredthe rangeofflow conditionsbeingstudied. In additionto integratingthe pressurecoeffi-cientsto determinepredictedstaticaerodynamiccoefficients,valuespredictedby Newtonianmethodsfrom reference29 were also

    37、 used for comparison. The fol-lowingtableliststhe numericalmethodsused and indicatesthe localflow con-ditions (aspreviouslydescribed)to which theywere applied:All All Subsonicnose,lSubsonicnose,Author Referencecapabilitysupersonicsubsonic supersonic mixedon coneconeKlunker,South,and Davis 30 X XKuma

    38、r and Gravesa 31 X X Xzoby andGraves 32 XMorettiand Bleich 33 X XSutton 34 X X XBarnwell 35 X XSouth 36 XaSolutionincludesthe effectsof viscosity.See reference20 for a briefdescriptionof thesetheoreticalmethods.5Provided by IHSNot for ResaleNo reproduction or networking permitted without license fro

    39、m IHS-,-,-RESULTSAND DISCUSSIONSShockShapes for 0 Angleof AttackSharpcones.-Measuredand predictedshockshapesfor sharpconeswith8 = 30 and 45 (figs.5(a) and (b)show the straightshockwave that isobtainedwhen it is attachedto thebody and the localMach number is super-sonic. Althoughthe inviscidmethodsof

    40、 references28 and 30 provideexcellentagreement(within2 percent)with measuredshock-layerthicknessesfor bothcone half-angles,calculatingtheboundary-layerdisplacementthickness 6“and adding it to theoriginalbody to get an equivalentshaperesultsin fur-ther improvementin the agreementbetweenmeasuredand pr

    41、edictedvalues. Anundocumentedlaminar,similarboundary-layersolutionwrittenby RalphD.Watson of theLangleyResearchCenterwas used to calculatethedisplacementthicknessesfor thesetwo cases.For the sharpconeswith = 60 and 70 (figs.5(c)and (d),the shockwave is detachedand the localMach number is subsonic. T

    42、he methodof refer-ence 36 was used to predictthe shockshapesby inputtinga nose-bluntnessratio rn/rb of 0.0,resultingin excellentagreementbetweenmeasuredandpredictedvaluesforboth cone half-angles.Shock shapesfor a 90 conewere measuredfrom schlierenphotographsof aflat-facedcylinderand are comparedwith

    43、 predictedvalues (refs.35 and 36) infigure6. Good agreement(within5 percent)betweenmeasuredandpredictedshock-layerthicknessesis shownby both methods.Blunt cones.-Measuredandpredictedshock shapesfor the sphericallybluntedconesat _ = 0 arepresentedin figure7. For = 30 andrn/rb = 0.25and 0.50 (figs.7(a

    44、) and (b),the localflow is subsonicin thenose regionand supersonicover the conicalafterbodyas indicatedby the pre-dicted (ref.34) sonicline. There is excellentagreementbetweenmeasuredandpredicted (refs.31 to 34) shocklocations,except that the approximatemethodof reference32 slightlyunderpredictsthes

    45、hock shapeaft of the sphere-conejunctionfor rn/rb = 0.50.Measuredshockshapesfor 8 = 45 and both nose-bluntnessratios(figs.7(c) and (d)are in excellentagreementwith predictedshockshapesfrom references31, 32, and 34. By assumingcompletelysupersonicflow alongthe conicalafterbody,it was possibleto use t

    46、he approximatemethodof refer-ence 32. Themethodof reference33 was not applicablebecauseof the presenceof subsonicflowalong theconicalafterbodyas indicatedby the soniclinespredictedby themethod of reference34.As shownby the soniclines (calculatedby themethod of ref. 35), theentirelocalflow field is s

    47、ubsonicfor = 60 and 70 and rn/rb = 0.25and 0.50 (figs.7(e), (f), (g),and (h). All threemethods (refs.34 to 36)used to calculatethe shock shapesfor thesefour casesprovideexcellentagreementwithmeasuredvalues.Shockshapesfor a spherewere measuredfrom schlierenphotographsof thehemisphericallybluntedcylin

    48、der(rn/rb = .00)and comparedwith predicted6Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-values (refs. 32 to 34) in figure 8. The excellent agreement between measuredand predicted shock shapes for the sphere was expected since all the previouscomparisons had shown excellent agreement in the spherically blunted noseregion for cones with 1Sonic lineNI_I I M_IoniC line iivI_t I -ivl_t_i - (e)Bluntedcone; det“ 0Figure4. Exampleso l


    注意事项

    本文(NASA-TP-1652-1980 Measured and predicted shock shapes and aerodynamic coefficients for blunted cones at incidence in air at Mach 5 9《当马赫数为5 9时空气中发生率的钝圆锥测量和预测的振动形状和空气动力系数》.pdf)为本站会员(rimleave225)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开