欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TR-184-1924 The aerodynamic forces on airship hulls《飞船外壳上的气动力》.pdf

    • 资源ID:836471       资源大小:857.92KB        全文页数:22页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TR-184-1924 The aerodynamic forces on airship hulls《飞船外壳上的气动力》.pdf

    1、i,1! ij “_iiI /I/.I1, zk2OSTAi “ “ itt /t_ “7 _ v “t TTHE AE_O,_ NAMIC _“_F(,RC_,a: C_:_ .: AIRSHIP tT_TT.t.q : By ,5IAX _L _.IUNKNoti.ce- , .i /( , .q: _hla _ -_ v , be Protected by Co:r,rL:h1“,L,. , : . ) - L,.“._._OD_ED BY. NATIONAL TECHNICAL .“ INFORMATION SERVICE :.I.,_ OPI_RTtANT Of COMMERCE_R

    2、IN_ILD, VA, 22161= . ., (:; WASItINGTON_OYERb:MEN_“ PRI.NTII_G OIlIC_;192_1ik .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NOTICETHIS DOCUMENT HAS BEEN REPRODUCEDFROM THE BEST COPY FURNISHED US BYTHE SPONSORING AGENCY. ALTHOUGH ITIS RECOGNIZED TH

    3、AT CERTAIN PORTIONSARE ILLEGIBLE, IT IS BEING RELEASEDIN THE INTEREST OF MAKING AVAILABLEAS MUCH INFORMATION AS POSSIBLE.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-“!REPORT No. 184TItE AERODYNAMIC FORCESAIRSHIP HULLSBy MAX M. MUNKNational Adviso

    4、ry Committeefor Acrol, auticsON-“ :-TZ=-I:. L :-T“I ;T“-7 674_-2I-q Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-INDEX.I. (_E_I-IAL PICt)I_-HtrIES ,x)F .+%EILODY,_AMIC |“L(,I%V:4,Pe,ge.I. VclociLy I._,telittal 52 Air l,res,qure . 63. Khtetic enerl

    5、=y aml it_omenlum . TILE At;ILODfNA.%IC :OIP, IHS ON :VlllLCllllP ULT,.,4.4. ,q(lal_hi. lilo(h_ri “. 95. I“,:ular p:lll . 12tl. ll._trilnith_i_ of lhc ,g.(,rod)i,.alilie Iorl,t_ . “ 1_7. (oiril_,ll._oli with :l model i_l . 5lIT. ,_(i_.IH PR.IICTIIAL (!ONCLUsIO.k.S. llelnctrk on the required ,_ize ,f

    6、/he lhi,_ . 70. The iiir_hil_ in cinlllar It_hi . l,_i0. Aerod)iliiniiv lo!_ t,. c_ll ;ill aii._hll II)inl thioill_h gll._l)“ air 3Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-ivAERONAUTICAL SYMI3OLS.1. FI_t_DAMENTAL AND DERIVED UNITS.iI/Length.Ti

    7、me .Force Metric. English.Symbol.Unit. Symbol. UrAt. Symbol.ltmotor .second weight, of one kilogram .In,see.kg.foot (or mile) .eecond (or h_ur) .weight of one pound ft. (or w.i.).see.(orhr,).lb.Power. P kg.m/sec Sp ed m/ o hor. o o,vormi/l_r . M. P. If.Weight, W= m:z.Standard acceleration of gravity

    8、,g = 0.S06m/sec? = 32.172 ft/scc2IVMass, m=-gDensity (mass per unit volume), pStandard density of dry air, 0.12-t7 (kg.-m.-see.) at 15.6C. and 760 ram. =0.00237 (lb.-ft.-see.)2. GENERAL SYMBOLS, ETC.Specific wcight, of “standard“ air, 1.223 kg/,n, z_- 0.07635 lb/ft. *Momcnt of inc:tia, roT:-_ (indlc

    9、ato axi: of theradius of gyration, 76 by proper sub_crlpg.Area, S; wing area, Sw, ctc.Gap, GSpan, _; chord length, c.Aspect ratio = b/cDistance flom c. g. to _,Icvator dnge,f.Coeflicicnt of visco_ityN_:, _3. AERODYNAMICAL SYMIOI,g.True airspeed, VDynamic (or impact) pressure, q=2 pLLift, L; absolute

    10、 coeiIicient_ CL=_:_$_Drag, D; absolute coefficient C,;_, D-Cross-wind force, C; al)solut,o eocfliclentCResultant force, R(Note that thcsn coefficients are twicelargo as the old cocfllcients L, De.)_sDihedral angle, */nolds Numbcr=p-v t, where l is ,: linear di-P.e)r“m.ension.e. g., for a model airf

    11、oil 3 in. chord, 100 a:ifhr.,normal prcssure,0C: 255,000 and at 15.t _C,230,000 ;or for a mo,lcl of I0 cm. chord, 40 m/see.,cerrc_pondiug r;umbers aro 299,000 and270,000.Ccntcr of pressure ocmcicnt (ratio of distancoof C. P. from leading edge to chord length),v,.Angle of setting of wings (relative t

    12、o thrust Angle of stabilizer setting with reference toline), i, lowcr wing. (it-/,) =;7Angle of stabilizer setting with reference to Angle of attack, athrust li=c it Angle of dowwwasl,PrecedingpageblankProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

    13、REPORT No, 184.TIlE AERODYNAMIC FORCLS ON AIRSIIIP HULLS.By ,Max ,lXl_.,-_,SUMMARi.This report describes the new method for making eomputati,m_ ire connection _:ith tilestudy of rigid airships, which w_s used in the investigation of Navys ZR-I by the specialsubeommit, tce ,)f the Yati(m_ ._,(Ivisory

    14、 Commil, tee for Aeronautics appa_-tcd for thi._ purpose.It presents the general the,)ry of (,lle Mz forces on aiship hulls of (he t.l_e mentiom, d, and a:iattempt has been made it) (levelop the results from the very fundamcntc;_ o.r mceh_nie_, will:-out reference to some of lh(, )node)i highly deve

    15、loped concepti()ns, _Gich may ),t yet bethoroughly know) () a reuler uninitiated into modern nezodynmnics, nat which m_y perhapsfor all times :em_in restrie(.ed I,o a small nuniber of sp(:einlists.I. GENERAl, I)ROPERTIES OF AERODYNAMIC FLOWS|1. Th(, studonl ,.)f the motion of solids in air will find

    16、 advantage h fitst neglecting theviscosity )rod compressibility of the latter. The influence of these tw., properties of air arcbetter stu,lied )fter the stmlont has become thoroughly familiar with tee simplified pr._tlem.The results are then t,() be e()rreeted and modified; but in most cases the;x

    17、remain sut,._tantiallyv,llid.Accordingly I l)ezin with the di._eussion of the _eneral properties of aerodynamic flowsproduced by the motion of one or more solid hudies within a perfect C“.fid otherwise at rest.In order to be ahle to apply the genera| laws of mechanics to fluid motim I.suppose th,.,

    18、air tobe divided into partiele,_ so small that the differences of velocity at diffe_dlt points of one par-ticle can he neglected. This is always possible, as sudden ehanges of velocity do not nceurin actual flows nor in the kiml of llows dealt with at present. The term “flow“ denotes theentire distr

    19、ibution of velc, eity in erich case.With aClodynamie th)v,_ external volume forces (that is, farces uniMmly distrihutcd o_erthe. volume) do m,t occur. The only farce of this character which could t,e supposed to influ-ence the flow is gravity. 11 is neutralized by the decrease of prcs,.ure _:i:h inc

    20、reasing altitude,_n,I both gravity and pressure decrease c,qn 1,e omitted without iT_ju_y to the. rcsnl,. Thisdoes not nefor 1o aerostatic forces sueli ns t l_e buoyancy of an airship, b_;t. the aelost_tio forcesare not a subject of this paper.The only f()rce satin V O)l a particle is therefore the

    21、resultant, of th, f,_r_.es ex_,rted by the)i, li_cent partMes. .ks the, fluid is supposed t, be nortviscous, it Ca:l n:)t )lan.sure, orrather tlle nc_+ltive gnldient. ._.nyslendy di,_t,il,u/i,m of pressurehns a =radirnt. at o._r.b p,ir_t,but. it“ a distrib,ti,n .i“ force., t-, of _,tll,u“ vectors) i

    22、s given, it, is _-t. aluays possible to asst,1,a quantity such ih,t thc f()re(,s are it.,; gradient.We dl:nt,tc the (lc,l.-il.v ,f air 1)y n: that is, the nt:_ss per ttnit vq)itmt(, a.-_.umt,d t,) 1)c t,n-staut, dr re;iv dem,l, ihc small v,lmn, of ;i pavtieh, t,f .dr. Tht, m;_:s ,f thi: p,rllch, i_

    23、thoupdr. The t. ,if“ tile v,h,.ity I“ ,ff till-; littrticle puallel t,+ .r,y, lind z may lie den,ted19by it, 1, ,givr the c.mp-nents fi.“the t_wthcr,irecti_nr-.The_e integr_Aswill hltel“ be trlln-:fi,rmed t, nlakr t.llrnl lit for il(.tual ct,n_put+ition of tile energy i/rid theliionl elll tim.Ii is

    24、stnlt, liine._, iiseful I_ consider very largo forrt, s, lll_.-;:l!/es, ,i“ vllhlnit, ftd(cs actili 7duriil 7 Ii time thnlcnt dt ;_, Ihat their I)illdutt. ,iy this lilii( ehitiOll lie,ll+-, lifo calh, “ilupiilive.“ ._iiltillliel by the tinie eh.n,ienl tiler illO eillled inllllllsos: ,_rtlensit.y ,t

    25、inlllul,_e liOi unil lirCil or tlnit, vohirno iI,-. tho eli.,.;(,lililV lr_2. ilh,r thesr 7Ollel/ll d0iiniion: illld exI)ilinlltitnl. % I prumed t_ hloproduvcd 1,_ the iu.tit,n t,f bt, its _ll;_co cu- dUlin_ li very sh_,ittime inlorval ,1; _,nl.v, dUlirig wllic,i l.ho ,?hangos of the l)il(:c c(llllJ

    26、/+lit_t,s, id“ thr llnrlich.,: Cllll lit;neffh,vlecilie_ riP( Iillilt. The f, lrres i:iid plt, sSllle-;, ,veve.l. are .:npi),:od t:j,-, h _l thtat dlliirig_, l,lir short int.orviil (inil.r vllanTes ill v,!i,l),nents n or potential llows gives a potential lowagain, it is thus dem,mslrated thai all ae

    27、rodynnmic flows are p(ttenti,d flows.It. can huth(.r lie sh,)wn that, for euch m(,li(m (if the he,lies immer:_ed in the fluid, tuqoexists only ,he 1)otcntia /low. l:m“ the intcg!nl () app)ietl to a slro,m line (that is, a linealways parallel h) the velocity) has always the same sign of the integranl

    28、, and henee (an m,tbecome zert). lence a str(am line can not. le ch)se(l, as othe.rwise the integral (t;) would ;.ivctwo different i)()tenlinls f()r tim same p()int, or ditrcr(,nt impulsive prt,ssmes, wliich is not 1)o:;-sible. On the t(,ntrary, ea(h stream line begins and ends at. the surface t)f o

    29、ne of the immers,dhi,dies. Now suppose that two potential tlows txist fro“ one moti,n of the he(lies. Thenreverse one , f them 1)y (hanging lh(, sign ,f the potential an(l sul(rl)oSe il, on tim idher. Theresulting fh,w is chnra(rl(nized lly all lmdies being at rest. .,tit llell no stre;tlrl lille Ca

    30、ll /It%illtit their surf:we, and tt,n(.e tim h)w has no stream, lines tit all altd the two originttl ilf tJ)e ,-_pn(e c,)4,rdim)l(,s,and so is t,he acceleration (If it parlicl(;. Each comptment of the _wc_.h, rali(,n, s_ly di“ ires to_)bt expressed 1)y the h)cal rate uf chttllgt2, of the velocity co

    31、mponent at . certain pt)itlt -_,_ alldProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-by the veh)cily c_,jnP(,m, ni:,n,l th,.i:l,mll d(,riv_tixe:_ lhendve_. Thin is ,h,ac by the equa-tiond, t.),- /.)“ _“ b,ilt = bt _ v b.r-i )b;t:- _b (9) .7For durin

    32、_ th(, unit (,f lil_l(_ lt,_, t)_lrli(le vh)m.k, es its c()()rdim, t,s hv , ),. _md ,i,. r(,_pectively,nnd therrf()r_, r(a(hes _t rrgir)n wh(,re the ;,hcil.y is larger by u_._, etc. increase (Ifvelocity has t() I)e ,d(led to th( rate ,)f chang(, per unit time (,l“the veloeily at one l)artirtdnrp(.)i

    33、ni.The gemral l)rin,il)les of me(hani(s. )_pl)lied to a par(.ich, .f unit vMume, give thereforrb,I b, 1d, _1, u._: vb_-, ,v6-; Ofdt = _t _ -: =- , -;_/ : . , (_t)Nul)stitut, ing (,gu)tti(m (7) in tlm h_st e(luntion , we have_rts sut)erpo.-ed. “!he first t)_r_.,bl,.-t)_/._s tiu, part ()f lhe inessme

    34、lmihling up )r chnnging the l:_tential flow. It, is zero i_ tl_olh)w is steady; rind, is, ifb+0-_=o . (_:3)Thr second part:_ 1._p!f the l)rosuro m,erssnry t() mainlain ,nd keep u I) t.he steady potrnti_d fl()w. It depends only()n the vel,)citv _md th, n._itv of the ilui(I. lho greater the vthcitr th

    35、i, smalhn“ tt,e pres_ _re.It is s.metim(,.,ressurr :,.ct,s I?erm:hcntly without chan;:ini:.the Ih,w, nml h(,nce with()ut than,m_ its kinetir (nergr. It tMh)ws tt_eref(,re tlmt tilt: Bofm)uillis pressure (14) n(ting nn the surface of a lnoving 1),)(_ cu_). not pt, rfornt or tonsure(:any m(,rh:mia is

    36、zero.3. ,“:,ome iml),)rlant f(,rmulas ft,ll,n_ from the ;(,l)lefi.)ll(s that tho m,unenitun imparted I_) (h:, II,:,v armm,I a h,ly m,:vingtn_nslatorv is par,rib to the Jrmli,)l_ ()f the t)odv. Sitwe _his m,_u.ntum is )rot)()rti,nnl t,) lhevehcity, the ,4feet of the air (,n the m,)ti(m ()f th(. body

    37、in this (lir,(.tion is then _aken care ()f byimparting b) the 1)()1)“ an apl)aren_ ad(litimml m_ss If the vel,)dty i: n()t ae(uhra)(.(t, m) forceis noce_;s:r: t, maintr_in thv m,ti,n. “lhr h()dv (,xl)crion(.(.s n,_ d:,_, whi(h i., pla_).,:il,h, ,s e,lissip_(i,)n ,f ent.rgy is ,.-sumc(I. . sin)ihn“ t

    38、hing may hal)pu_ wilh a rot,ring body, wht,reProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-“l;lll:; AEROT)YNAMIC FtJl_dI:,S ON AIIISI.ilP ttl;irs. 9then the body seems to possess an apparent additiollttl moment oTmf the lira, produced by the movir:

    39、gbody in the lluid othelavise at rest.II. TIlE AERODYNAMIC FOIICI2S ON AIRStllP IISLLS.,t. An important b,an(,h of theoretical aerodynamics deals with moments on bodies m,v-ing through the air while producing a polent.ial tlow. Wings prodw, c atlow difrerent from apotential llow, in the strict, mean

    40、ing of the word. The wings haw therefore to l,e excludedfront the following discussion.Consider litst bodies m(,ving slr:_ight and with constant veloeilg V tllr,mgh air ext,:mlingin. all direeli,ns t,) inlinitv. Tl,ere can not then be a drag, as th,.l.inetic energy of tit; flowremains COllelallt ali

    41、a no dissipation of energy is supposed to lake iplaee. Nor van tl)ere t,. t,67 tsd-24-2Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10 RI;P(JIFI NATIONAl, AI,flN_RY t;bt31!FFEI.; l“Ol_ ,tI;R(I:,AIJTIC.g.,/ Ilifl. in CtlllfOl1111ilrV with tlle rema

    42、rks jt,_t, made. ilencc lhe k, pressmres can at, best producaa resultant, pure c,*uple _t foree_ ar re._ult:mt nmment. The,nngnitudc and ,lirecli,m of ,.,ismoment will depend ,n the magnitude ,_f the eel.city 1“ and m the po.dtion of the hod 5“ rda-tivc t, the direction ,f its moti-n. With :L change

    43、 ,f veloci_ all pr,.ssures measured from a._uitable stnnd:_rd, change pr,port.ianaI t* the square of the vdtmily, as tollows fr,ml equnt ,1(1,1). Ih, nce the resultant moment is likewise praportitmal t,_ti, r square of the velt;cily. Inaddition it. will depend on.the pc,siLi,m of the hody relative t

    44、., the direction of motion. hestudy t,f this latter retation is the chief sulet of this seethm. At each different positiml c_fthe Imdy relative to the motion the llow produced is different, in ;sacral aud s is the m,_menlum,ff the fhm-, posse._sing different components in the direction of md at righ

    45、t angles I,_ tile dixce-t.i,n of motion, l_y no means, however, san the relation l_,_,veen the lnomel_tlm-t and Lhedireclion of motion be quite arbitrarily prescribed. The lime dee to the straight motion inany direction can t)e obtained by tilt ._uperposition ,)f three fhxvs produced by the m,_tiot,

    46、s irtthree particular directions. That restricts the possibilities eoadderably. Bug that is not:. all.the moments san not even arbitrarily be prescribed in thrat directions. I shall preser, tlyshow that On,re are additional restrictions based (m the primiple of conservation of energygild ll|(_lllell

    47、 tllln.Let. there bc a component af the m,!nentum lateral to fit, motion, equal to l:al), wh,.rt:a dmmtes the. density of the air. Sines the l,ody is advancing, this lateral component of themomentum has emltinually t_, be annihilated at its momentary,msitlon and to be created an,.win its next positi

    48、on, occupied a ngment later, This process nguires a resultant moment,M= It_ TZp (17)about au ttxis at. right angles to tilt, direction of moti(m and to t;ie monu,ntum. It: other wor h_wever, if the m,tion of lheimmersed solid is rerersed, for then tire entire flow is revcr.s,_,t. lhcrcfore each pair of dirce-


    注意事项

    本文(NASA NACA-TR-184-1924 The aerodynamic forces on airship hulls《飞船外壳上的气动力》.pdf)为本站会员(feelhesitate105)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开