欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TR-1135-1953 Equations tables and charts for compressible flow《可压缩流的方程式 表格和图表》.pdf

    • 资源ID:836439       资源大小:3.54MB        全文页数:70页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TR-1135-1953 Equations tables and charts for compressible flow《可压缩流的方程式 表格和图表》.pdf

    1、REPORT 1135EQUATIONS, TABLES, AND CHARTS FORCOMPRESSIBLE FLOWBy AMES RESEARCH STAFFAmes Aeronautical LaboratoryMoffett Field, Calif.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-REPORT 1135EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW 1By AME

    2、s RESEARCH STAFFSUMMARYThis report, which is a revision and extension of NACA TN1_28, presents a compilation of equations, tables, and chartsuseful in the analysis of high-speed flow of a compressible fluid.The equations provide relations for continuous o_e-dimensionalflow, normal and oblique shock

    3、waves, and Prandtl-Meyerexpansions for both perfect and imperfect gases. The tablespresent useful dimensionless ratios for continuous one-dimen-sional flow and for normal shock waves as functions of Machnumber for air considered as a perfect gas. One series of chartspresents the characteristics of t

    4、he flow of air (considered a perfectgas) for oblique shock waves and for cones in a supersonic airstream. A second series shows the effects of caloric imperfec-tions on continuous one-dimensional flow and on the flowthrough normal and oblique shock waves.INTRODUCTIONThe practical analysis of compres

    5、sible flow involves fre-quent application of a few basic results. A convenientcompilation of equations, tables, and charts embodying theseresults is therefore of great assistance in both research anddesign. The present report makes one of the first suchcompilations (ref. 1) more readily available in

    6、 a revised andextended form. The revisions include a complete rewritingof the lists of equations, as well as the correction of certaintypographical errors which appeared in the earlier work.The extensions are primarily in the directions dictated byincreasing flight speeds, that is, to higher Mach nu

    7、mbers andto higher temperatures with the accompanying gaseousimperfections.Compilations similar to those of reference 1 have beengiven in other publications, as, for example, references 2through 6. These references have been utilized in extendingthe tables and charts to higher values of the Mach num

    8、ber.The extension to imperfect gases is based on the relationspresented in references 7 and 8.SYMBOLS AND NOTATIONPRIMARY SYMBOLSaAspeed of soundcross-sectional area of stream tube or channelC_C_,CehlMPqqRRSbSTU_tVVWa5pnormal forcenormal-force coefficient for cones,q_S_specific heat at constant pres

    9、surespecific heat at constant volumeenthalpy per unit mass, u-_pvcharacteristic reference lengthMach number, Vapressure 2dynamic pressure, pV2/2heat added per unit massgas constantReynolds number, pVlbase area of coneentropy per unit massabsolute temperature 2internal energy per unit massspecific vo

    10、lume, 1pvelocity components parallel and perpendicularrespectively, to free-stream flow directionvelocity components normal and tangential,respectively, to oblique shock wavespeed of flowmaximum speed obtainable by expanding tozero absolute temperatureexternal work performed per unit massangle of at

    11、tackratio of specific heats,angle of flow deflection across an oblique shockwaveshock-wave angle measured from upstream flowdirectionmolecular vibrational-energy constant1Mach angle, sin-l_absolute viscosityPrandtl-Meyer angle (angle through which asupersonic stream is turned to expand fromM=I to M_

    12、I)Supersedes NACA TN 1428, _Notes and Tables for Use in the Analysis of Supersonic Flow“ by the Staff of the Ames 1- by 3-foot Supersonic Wind-Tunnel Section, 1947.When used without subscripts, p, p, and T denote static pressure, static density, and static temperature, respectively.613Provided by IH

    13、SNot for ResaleNo reproduction or networking permitted without license from IHS-,-,- _, - .“ _“ _ _ _. _ _r k_ _ -._614 REPORT l135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICSpressure ratio across a shock wave, PJplp mass density _a semivertex angle of coneSUBSCRIPTSfree-stream conditions1 condition

    14、s just upstream of a shock wave2 conditions just downstream of a shock wavet total conditions (i. e., conditions that wouldexist if the gas were brought to rest isen-tropically)* critical conditions (i. e., conditions where thelocal speed is equal to the local speed of sound)c conditions on the surf

    15、ace of aconer reference (or datum) valuesperf quantity evaluated for a gas which is both ther-mally and calorically perfecttherm perf quantity evaluated for a gas which is thermallyperfect but calorically imperfect( )p derivative evaluated at constant pressure(), derivative evaluated at constant ent

    16、ropy( )r derivative evaluated at constant temperature(). derivative evaluated at constant specific volume( ), quantity evaluated over a reversible pathNOTATIONThe notation in brackets after many of the equationssignifies that the equation is valid only within certainlimitations. )or example :pelf me

    17、ans that the equation is restricted to a gaswhich is both thermally and caloricallyperfect. (By “thermally perfect“ it ismeant that the gas obeys the thermalequation of state p=pRT. By “caloricallyperfect“ it is meant that the specific heatscp and c, are constant.)therm perf means that the only rest

    18、riction on the gas isthat it must be thermally perfect. Equa-tions so marked may be used for caloricallyimperfect gases. (They are, of course, alsovalid for completely perfect gases.)isen means that the flow process must take placeisentropically. Equations so marked maynot be applied to the flow acr

    19、oss a shockwave.adiab means that the only restriction on the flowprocess is that it must take place adiabati-cally-that is, without heat transfer. (Sucha flow process may or may not be isen-tropic depending on whether it is or is notreversible.) Equations so maxked may beapplied to the flow across a

    20、 shock wave.An equation without notation has no restrictions beyondthose basic tb the study of thermodynamics and/or inviscidcompressible flow.FUNDAMENTAL RELATIONSTHERMODYNAMICSTHERMAL EQUATIONS OF STATEA thermal equation of state is an equation of the“formp-p(v, T) (1)Several of the more commonly

    21、used thermal equations ofstate are the following:Equation for thermally perfect gasRTp_-_-= pRT therm per/ (2)ordp dp dTP p _-0 therm peril (3)Eqdations for thermally imperfect gasVan der Waals equation (ref. 9)RT aP=V-b-_ (4)where a is the intermoleeular-force constant and b isthe molecular-size co

    22、nstant (see ref. 9, pp. 390 et seq. fornumerical values).Berthelots equation (ref. 7)RT cP=v-b v2T (5)where b is the molecular-size constant and c is theintermolecular-force constant (see ref. 7 for numericalvalues).Beattie-Bridgeman equation (ref. 10)p-=R_.T_(l- C_Fv+Bo(l-b)7-_-i(1-a) (6)v v.t/l_ v

    23、ia v k v/where a, Ao, b, B0, and c are constants for a given gas(see ref. 10, p. 270 for numerical values).CALORIC EQUATION OF STATEA caloric equation of state is an equation of the formu=u(v, T) (7)It can be shown thatdu=c, dT therm peril (8b)If the gas is calorically perfect-that is, the specific

    24、heatsare constant-equation (8b) can be integrated to obtainu=c,T+u, peril (9)2 When used without subscripts, p, o, and T danote static pressure, static density, and static temperature, respectively.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-ENER

    25、GYRELATIONSThe law of conservation of energy givesdq=du_dw (first law of thermodynamics)_ (10a)t=du+p dv=dh-v dpdq=c, dT+p therm pert (lOb)=cp dT-v dpSPECIFIC HEATSspecific heats at constant pressure and constantEQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOWENTROPYThe entropy is defined byIt fo

    26、llows thatThevolume are defined by/bq “_ bh_c _k_r =k_), (11)It can be shown that( pY5u _T_/.c_c,=(_)r+p _(Op,_ (13a)bv/rc_-co=R therm peril (13b)The ratio of specific heats is defined asCp (14)C_According to the kinetic theory of gases, for many gases overa moderate range of temperature,n+2 (15)nwh

    27、ere n is the number of effective degrees of freedom of thegas molecule. Useful relations for thermally perfect gasesaredh _ n .yRc_=_T=C,_=_- 1 therm perf (16)du R therm peril (17)c_=_=c_,-R=,y_ 1ENTHALPYThe enthalpy of a gas is defined byh-uWpv (18)It follows thatdh-du+p dv+v dp=dq+v dpi_p _pdh=(c,

    28、+R)dT=c,dT therm perf (19b)h=(c,-t-R)T-t-u,=c,T+u, peril (20)615(21)ds _du+dw_ iZdu+pdv_ dT. Sp ,=. _ ./,= _- -),=c.-_-i.-_a_,) av (22a)dT. _ dr“ds=C, -T-+ _ -ff-dT R dp=c_- -;therm peril (221)_ dT o dp-c_?-cp dp7-.Ts-s,-c, In _/,_, R In -Pp,-c_ In T-Rln -p peg (23a)Ir p_=C, In P-c_.ln -PP,Pr.T/T_s-

    29、s,=c, In (p/p,)_-c_ In T/T, perf (23b)(p/p_) (_-_)_=c, ln P/P“(p/p,)_P-P-= P“ e(-, )/, peril (24)p_ pr _The second law of thermodynamics requires thats-s,_O adiab (25)CONTINUOUS ONE-DIMENSIONAL FLOWBASIC EQUATIONS AND DEFINITIONSThe basic equations for the continuous flow of an inviscidnon-heat-cond

    30、ucting gas along a streamline are as follows:Thermal equation of stateP=RT therm perfl (26)pDynamic equation1 dp-_VdV=O (27)pProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-:_ ;:7 , , -_,_ _ * “_: (; _;_*_, _- _“ ._ _. _ “ , “ “ !. “2, _:, “:_ “*.7 7

    31、_616 REPORT l135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICSEnergy equationdh+VdV=O )cpdT+ VdV=O t3,._d(P)+vdV:O_ adiab, thermperf (28b)Additional useful variables are defined as follows:Speed of soundI-=._,lv P=_ therm pert (29b)_49.0 n/_ ft/sec for airif T is in degrees Rankine(=degrees Fahrenheit

    32、 +459.6) (29c)Mach numberDynamic pressure1q -_ o V -_VM-=- (30)a(31 a)therm perf (31b)INTEGRATED FORMS OF ENERGY EQUATIONTile energy equation (28) can be integrated at once toobtainV 2h +_-:constant-ht adiab (32a)V 23“ /p.V 2 3“ (P)3“-1(,-;) +a 2 y _ at 23“- 1 _“ 2 3“- 1 adiab, perf (32b)a 2 . V 2 1

    33、 3“-+- 1_3“zi+_-=_ _1 a*_a 2 I7 2 Vm 27-1_2 2The three reference speeds at, a, and V, are related bya, 3“+1“(V_ * _+1-_-, = _ adiab, pert (33)(v.y= zat 3“-1PRESSURE-DENSITYRELATIONFrom equations (27) and (28b) it follows that_P -constant- p isen, perf (34)p_ pt _from whichp (py“ (Tv-1 (a_ “_-p_ p,-/

    34、-T-t/ -_/ isen, perf (35)BERNOULLI*SEQUATIONCombination of equations (32b) and (35) gives Bernoullisequation for compressible flow in the form“y-1 ()3“ Pt P _, = 3“ Pt isen, perf (36)RELATIONSBETWEENLOCALANDFREE-STREAMCONDITIONSWith the aid of the foregoing equations it can be shown thatT , _-1 V 2M

    35、: adiab, perf (37)!V 2 _-1P-_I-_-I M2(_._)-l isen, perf I (38)p_ ( 2Ip V 2_-_=1-“/2 -1 M*2(.V_)-I v-t isenperf (39)In small-disturbance theory, where it is assumed that(V-V.)_0 (87)It follows immediately from the energy relation (86) thattotal enthalpy, total temperature, and total speed of soundare

    36、 constant across the shock and hence (from the previousrelations“ (33) for adiabatic flow) also the critical speed ofsound and limiting speed:htl:htT,= T, 2 1ah=at26*1=6*2 /V,.l=V,.2 jCombining equationsrelationadiab (881)adiab, perf (88b)(84) to (86) leads to Prandtlsuau2-_a,2=P2-P_ adiab, per/ (89

    37、)p_-Plwhich implies that the flow is supersonic ahead of the shockwave and subsonic behind (the reverse possibility is ruledout by the requirement of nondecreasing entropy), and tothe Rankine-Hugoniot relationsp_2 (v-t-l) p2-(_- 1) p, adiab, perf (90)p, (5“+1) p,-(v-1) p2P2 (5_- 1) P2+(5“- 1) p, adi

    38、ab, perf (91)p-_-(_+ 1) p1-_-(5“- 1) p2_ p2+pt adiab, perf (92)p2-P, 5“p2-Pl P2qt-PtUSEFUL RELATIONSMany relations for normal shock waves are convenientlyexpressed in terms of either upstream Mach number M_ orttm static-pressure ratio across the shock _-p2/px. The fol-lowing relations apply to adiab

    39、atic flow of a completelyperfect fluid. The last form of each equation holds for_=7/5.Parameter M,.-P_t_-= 27M_2- (7- 1)_ 7 M_ 2- I (93)p, 5“+1 6p_ Ul U, 2 a. 2_ (_-t-1) M_ 2 _ 6M_ 2 (94)_-_a a2_-_-(5“-I) M,2+2-M_%5T2 a22 25“M,2-(5“-1)1 (_-1) M,+2_=_- (_-t- 1) 2 M,=(7M, 2- 1) (M,2+5)36M, _(5-1) M,2+

    40、 2 M,2+ 5M22“ 25“ M_ 2- (5“ - 1 )-_7 M, 2- 1!p_ 25“ M12-(7- l)V,=- _-_ (5“_ 7_ -l-1) M_2+21_ 5 _“7M_2-1(M_+5 )6(95)(96)(97)7p2 -45“M,2-2(v-I)-_=5(7M2-1) _=L (_i-)_ _ a 36M,2P_2=P _._2=e-_Pq Pq .17- (5“+ 1) M, * - _ _+! .T -1=L(_ i-)_,-_ 2- L2,_M,-(5“- l)j7 5= U ,-_4_/1.),p,2 F(5“+I)/,27_F 5“+1 i-p-7

    41、,=L- 2 j L25“M,2-(5“- 17 |=(6M“_) (7M16-I) (100)(Rayleigh pitot formula)As P2_-s- (_- 1) _: - (5“- 1) In (_-_h)lnF25“M?_(5“_1)l 5“in - (5“+I)M_ 1= L _ J-L(5“- |)M“+ 2J_ln(7M6-1 7, 6Mr (101)- )-_,n LM_)p2-P, 4(M, 2-1) 5(Mt2-1) (102)q, - (-1)M, _=-Numerical values from equations (93), (94), (95), (96)

    42、, (99),and (100) (with 5“=7/5) are given in table II.For weak shock waves (M_ only slightly greater than unity)the following series are useful:_= 1)s+ 25“225“ (M2 (M_ _- 1)+ -Ph1 -2_6 2 s 245= (M, -1) -b_-g_ (M,- 1)-t- (103) As 1 As 25“1)2(_2 .,s 25“ 2 t_2_l)*._._-5“-1 c, 3(5“+ _-(5“+1) _135 , -s 24

    43、5 (M2_l),_t - .- (104)=2_ (M, - 1)-gg_(98)619EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOWProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-620 REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICSParameter _ _p2/p1.-M,2= (.y+ 1),_+(-r- 1) 6_+1

    44、 (lO5)2_ 7O_2_u_2=(-y+1)_+(-y-1) 6_+ 1 (106)pl u2 (_-1)_+(_(+1) _+6T2_a22=_ (_/- 1)_+(_,+ 1) _+6 (107)Tl-al 2 “ (_+l)_+(-y-1) _6_+1M22_ (_- 1)_+(_ + 1)_ _-+6 (108)2-y_ 7_ 7P2=_ P, _ ( 4“y )- J- 35 -iVq p,_-_i(l+ 1)(_,- 1)_ + (5, + 1)1 _ =_J(10 9)“y 7P-_t2- _t2 = (_+ 1)(_-_ 1)+ (7- 1) _ L6(6+ 1)_J_f-

    45、 F(,y+ i)_+(,),- i)7,-,L_)J(1 10)AS 1Pt_ pt_ R “r-1Pq Pq5 7 _-_-/ (11 1)AS= (,),- I) _= - (3,- I) In (P“_=In _-ev pq/,_F(.y+l)_+(-r-1)-I ,. 7. 6_+1For weak shock waves (_ only slightly greater than unity)-_ _+1P2 1-2_ (_- 1)3+ (_- 1)+ Pqa 15=1-5(_-1) +_(_-1)+ . (1 13)As_ 1 As _/+1 1)a _+1R -_-1 c,-1

    46、2_ (_- -8_-_ (_-1)4+“5 s 15=4-9 (_- 1) -_-_ (_-1)4+ , (114)In unsteady flow a normal shock wave acts at each in-stant as a steady shock. Hence all the above relations arevalid across a moving normal shock wave if instantaneousvelocities are measured relative to the shock.OBLIQUE SHOCK WAVESIn genera

    47、l, a three-dimensional shock wave will be curved,and will separate two regions of nonuniform flow. How-ever, the shock transition at each point takes place instan-taxmously, so that it is sufficient to consider an arbitrarilysmall neighborhood of the point. In such a neighborhoodShock wove _.P, PI P_ P2u2_ ?2 o2T_ o_M I S I M2 $ 2Sireomline= _ _ _ _/FIaURE 2.-Notation for oblique shock wave.the shock wave may be regarded as plane to any desireddegree of accuracy, and the flows on either side as uniformand parallel. Moreover, with the proper orientation ofaxes the flow is locally two-dimen


    注意事项

    本文(NASA NACA-TR-1135-1953 Equations tables and charts for compressible flow《可压缩流的方程式 表格和图表》.pdf)为本站会员(syndromehi216)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开