欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TR-1096-1952 Experimental determination of the effect of horizontal-tail size tail length and vertical location on low-speed static longitudinal stability and damping in ing .pdf

    • 资源ID:836435       资源大小:1.36MB        全文页数:26页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TR-1096-1952 Experimental determination of the effect of horizontal-tail size tail length and vertical location on low-speed static longitudinal stability and damping in ing .pdf

    1、: . . a r , :- I . . _ *. , ., .j NAII-ON :. . . smupicY Atid XMPING ,IN .PITCH:OF A. j -1 . I MbDEir HAVING 454 j3WEi?i!BACk : . . , , , . WA ._ . _ ,- -. , ; ” ,. .- _:- . a I. , , . : . ; -, ., .“. / . . .I:- . - _, I :, , .*- . Provided by IHSNot for ResaleNo reproduction or networking permitted

    2、 without license from IHS-,-,-TECH LIBRARY KAFB, NM REPORT 1096 EXPERIMENTAL DETERMINATION OF THE EFFECT OF HORIZONTAL-TAIL SIZE, TAIL LENGTH, AND VERTICAL LOCATION ON LOW- SPEED STATJC J,ONGITUDINAL STABILITY AND DAMPING IN PITCH OF A MODEL HAVING 45” SWEPTBACK WING AND TAIL SURFACES By JACOB H. LI

    3、CHTENSTEIN Langley Aeronautical Laboratory Langley Field, Va. I Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-National Advisory Committee for Aeronautics Headquarters, 1724 F Street $VV., Washington 25, D. C. Created by act of Congress approved Mar

    4、ch 3, 1915, for the supervision and direction of the scientific study of the problems of flight (JJ. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act approved March 2,1929, and to 17 by act approved May 25,194s. The members are appointed by the President, and serve as

    5、such without compensation. JEROME C. HUITSAKER, SC. D., Massachusetts Institute of Technology, Chairman ALEXAKDER WETMORE, SC. D., Secretary, Smit,hsonian Institution, Vice Chairman ALLEN V. ASTIN, PH. D., Director, National Bureau of Standards. DETLEV W. BRONK, PR. D., President, Johns Hopkins Univ

    6、er- sity. THOMAS S. COMBS, Rear Admiral, United States Navy, Chief of Bureau of Aeronautics. LAURENCE C. CRAIGIE, Lieutenant General, United States Air Force, Deputy Chief of Staff (Development). HON. THOMAS W. S. DAVIS, Assistant Secretary of Commerce. JAMES H. DOOLITTLE, SC. D., Vice President, Sh

    7、ell Oil Co. MATTHAS B. GARDNER, Vice Admiral, United States Navy, Deputy Chief of Naval Operations (Air). R. M. HAZEN, B. S., Director of Engineering, Allison Division, General Motors Corp. WILLIAM LITTLEWOOD, M. E., Vice President, Engineering, American Airlines, Inc. HON. DONALD W. NYROP, Chairman

    8、, Civil Aeronautics Board. DONALD L. PUTT, Major General, United States Air Force, Vice Commander, Air Research and Development Command. ARTHUR E. RAYMOND, SC. D., Vice President, Engineering, Douglas Aircraft Co., Inc. FRANCIS W. REICHELDERFER, SC. D., Chief, United States Weather Bureau. HON. WALT

    9、ER G. WHITMAN, Chairman, Research and Develop- ment, Board, Department of Defense. THEODORE P. WRIGHT, SC. D., Vice President for Research, Cornell University. HUGH L. DRYDEN, PH. D.: Director JOHN F. VICTORY, LL. D., Executive Secretary JOHN W. CROWLEY, JR., B. S., Associate Director for Research E

    10、. H. CHAMBERLIN, Executive Ogicer HENRY J. E. REID, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va. SMITH J. DEFRANCE, LL. D., Director, Ames Aeronautical Laboratory, Moffett Field, Calif. EDWARD R. SHAPP, SC. D., Director, Lewis Flight, Propulsion Laboratory, Cleveland Airpor

    11、t, Cleveland, Ohio LANGLEY AERONAUTICAL LABORATORY, AMES AERONAUTICAL LABORATORY, LEWIS FLIGHT PROPULSION LABORATORY, Ilangley Field, Va. Moffett Field, Calif. Cleveland Airport, Cleveland, Ohio Conduct, under uni$ed control, for all agencies, of scientific research on the fundamental problems of fl

    12、ight II Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-F . (_ : . . . : i,. / . .I . . B !I I ,BR: ; . - . v NACA RFXkT 1096 ” EXPERIMENTAL DETERMINATION OF THEEFFlkT OF HtiRIZONkAkAIL TAIL IENGTH, AND VERTICAL LOCATION ONU)W-SPEED STATIC LONGITUDIN

    13、AL STABILITY AND DAMPING IN PITCH OF A MODEL HAVING 45 SWEPTBACK WING AND TAIL k?FACES By Jacob H. Lichtenstein _L 1952 Page 2, first column, line 19: dynamic chord. Insert bar over symbol c for SIZE, mean aero- Page 2, first column, line 20: Insert symbol 2 for tail length. . . _ - - -. ,_. : - _-

    14、j. - . .-_. -. . - .- .- . . . . - . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-REPORT 1096 EXPERIMENTAL DETERMINATION OF THE EFFECT OF HORIZONTAL-TAIL SIZE, TAIL LENGTH, AND VERTICAL LOCATION ON LOW-SPEED STATIC LONGITUDINAL STABILITY AND , .“.

    15、 .- DAMPING-IN: PITCH OF A MODEL HAVING- 45O SWEPTBACK WING AND TAIL SURFACES l By JACOB H. LICHTENSTEIN SUMMARY An investigation has been conducted in the Langley stability tunnel to determine the effects of horizontal tails of various sizes and at various tail lengths (when located on the fuselage

    16、 center line) and also the effects of vertica.1 location of the hori- zontal tail relative to the wing on the low-speed static longitudinal stability and on the steady-state rotary damping in pitch-for a complete-model configuration. The wing and tail surfaces had the quarter-chord lines swept back

    17、45” and had aspect ratios of 4. The results of the investigation showed that, in agreement with analytical considerations, the contribution of the horizontal tail to static longitudinal stability was related directly to the tail size and length; whereas, its contribution to damping in pitch was rela

    18、ted directly to tail size and the square of tail length. the designer has little assurance that the low-speed charac- teristics will be satisfactory for any specific configuration. The low-speed characteristics of wings suitable for high- speed flight have already been investigated quite extensively

    19、. The contributions of other component parts of the aircraft, or of the various combinations of component parts for high-speed airplane configurations, however, are not well understood. In order to provide such information, a series of investigations of models having various interchangeable componen

    20、t parts is being conducted in the Langley stability tunnel. In these investigations, the rotary derivatives are being determined by the rolling- and curved-flow techniques (see references 1 and 2) and the static stability characteristics are being determined by conventional wind-tunnel procedure. At

    21、 low angles of attack, addition of the wing decreased the contribution of the horizontal tail to static longitudinal stability by about one-half to one-third depending upon the vertical posi- tion of the tail relative to the wing; the contribution of the hori- zontal tail to the rotary damping in pi

    22、tch on the other hand was almost una$ected by addition of the wing, regardless of tail area or location. For con$gurations with the horizontal tail mounted along the fuselage center line, the static longitudinal stability was greater at angles of attack near the stall than at OD; the static longitud

    23、inal characteristics were impaired, however, by moving the horizontal tail upward. On the other hand, for conJigurations with the horizontal tail mounted along the fuselage center line, the rotary damping in pitch was less at angles of attack near the stall than at O”, but the damping in pitch was g

    24、enerally increased by moving the tail upward. The present investigation is concerned with the effects of horizontal tails of various sizes and at various tail lengths (when located on the fuselage center line) and also the effects of vertical location of the horizontal tail with respect to the wing

    25、on the low-speed static longitudinal stability and the steady-state rotary damping in pitch for a swept-wing configuration. Some effects of fuselage fineness ratio and of wing-fuselage interference are also considered. The rotary damping in pitch specifies the damping resulting only from curvature o

    26、f the flight path, such as that obtained during a steady pitching maneuver in which the radius of flight-path curvature is constant. For a pitching oscillation, the rotary damping derivative represents only a part of the total damping since additional contributions may result from unsteady aerodynam

    27、ic phenomena such as the lag of downwash between the wing and horizontal tail (refer- ences 3 and 4). It was further indicated that, at an angle of attack of about IO”, the static longitudinal stability of the wing-juselage com- bination changed adversely and that the magnitude of this change was sl

    28、ightly increased by the addition of tail area along the fuselage center line at the shortest tail length but was decreased by addition of area along the fuselage center line at the longest tail length. The model used in the present investigation had 45 sweptback wing and horizontal-tail surfaces wit

    29、h aspect ratios of 4. The model configurations tested for the present investigation are generally the same as those configurations used in the investigations of static lateral stability deriva- tives reported in references 5 and 6. SYMBOLS INTRODUCTION Requirements for satisfactory high-speed perfor

    30、mance of aircraft have resulted in configurations that differ in many respects from previous designs. As a result of these changes, 1 Supersedes NACA TN 2381, “Effect of Horizontal-Tail Location on Low-Speed Static Longitudinal Stability and Damping in Pitch of a Model Having 45 Sweptback Wing and T

    31、ail Surfaces” by Jacob H. Lichtenstein, 1951, and NACA TN 2382, “Effect of Horizontal-Tail Size and Tail Length on Low-Speed Static Longitudinal Stability and Damping in Pitch of a Model Having 45O Sweptback Wing and Tail Surfaces” by Jacob H. Lichtenstein. 1951. The data presented herein are in the

    32、 form of standard NACA coefficients of forces and moments which are referred to the stability system of axes, with the origin at the pro- jection on the plane of symmetry of the quarter-chord 232358-53-l 1 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-

    33、,-,-2 REPORT 1096-NATIONAL ADVISORY COMMITTEE FOR AEIRONAUTICS point of the mean aerodynamic chord of the wing. The positive directions of the forces, moments, angles, and angular velocities are shown in figure 1. The coefficients and symbols are defined as follows: CD cn cn L D M N e s b c A Y x a

    34、VF LF P .cv- 2v lift coefficient (L/k p V2Sw) drag coefficient (D/i p V2Sw) pitching-moment coefficient (1 M i p V2SwCw yawing-moment coefficient N U i p V2Swbw lift, pounds drag, pounds pitching moment about for example, increment resulting from interference ef- fect of wing and fuselage; for examp

    35、le, A1cm,=c,+F-(c,-(c) Subscripts : W wing F fuselage V vertical tail H horizont,al tail r radian measure APPARATUS, MODELS, AND TESTS The general research model used for the present investi- gation was designed to permit tests of the wing alone, fuselage alone, or the fuselage in combination with a

    36、ny of several tail configurations-with or without the wing. A sketch with some dimensions of the complete model with one particular tail configuration is shown in figure 2. A list of the pertinent geometric characteristics of various component parts is given in table I. All of the parts were constru

    37、cted of mahogany. Three fuselages and three horizontal tails were used for the tests in various combinations with and without the wing. For convenience, each component is designated as follows: W_- Wing F, Fz, F3- _ -_-_-_- Fuselages V _ - _ -_-_-_- _ -_ Verticaltail H, Hz, Ha- Horizontal tails A co

    38、mplete list of all t,he configurations investigated is presented in table II. The three fuselages (fig. 3) were bodies of revolution having circular-arc profiles and fineness ratios of 5 for fuselage 1, 6.67 for fuselage 2, and 10 for fuselage 3. The wing and the three horizontal-tail surfaces all h

    39、ad aspect ratios of 4.0, taper ratios of 0.6, and NACA 658008 airfoil sections parallel to the plane of symmetry; the quarter-chord lines were swept back 45. Ordinates for the NACA 65A008 airfoil section are given in table III. The horizontal tails, the incidence of which was kept at O” for all test

    40、s, differed from each other only in area and are designated as H, H2, and H3 (in order of increasing size) in figure 4 and table I. On each Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-EFFECT OF HORIZONTAL TAILS ON LOW-SPEED STATIC LONGITUDINAL ST

    41、ABILITY AND DAMPING IN PITCH 3 of the fuselages, each of the three horizontal-tail surfaces was attached along the fuselage center line and at the same longitudinal location. On fuselage 2, however, horizontal tail 2 was tested at three horizontal locations for each of three vertical locations, as i

    42、llustrated in figure 5. In refer- ence to the horizontal-tail locations, the letters L, C, and U indicate the vertical position as being lower, center, or upper, respectively;-tbeletters B, M, and R indicate the horizontal location as being forward, middle, or rearward, respectively. The lower middl

    43、e position is the same as that at. which the other two horizontal tails were tested. A drawing of a complete-model configuration with tbe horizontal tail in the lower position and a photograph of the model with the horizontal tail in the upper position without a wing are presented in figures 6 (a) a

    44、nd 6 (b), respectively, to illustrate the test setup in the tunnel. The model was rigidly mounted on a three-support-strut system with the pivot point 4 inches rearward of the quarter-chord point of the mean aerodynamic chord. Forces and moments were measured by means of a conventional six-component

    45、 balance system. The tests were made in the 6- by 6-foot test section of the Langley stability tunnel. The dynamic pressure for the tests was 24.9 pounds per square foot, which corresponds to a Mach number of 0.13 and to a Reynolds number, based upon the wing mean aerodynamic chord, of 0.71X10e. The

    46、 angle of attack was varied from about -6O to about 32O for the tests. In addition to the straight-flow tests, the tunnel . -11.25 - -11.06- -Horizontal tail (see fig. 4) F6.754 FIGURE 2.-Dimensions of the complete model. AU dimensions are in inches. flow was curved to obtain values of qc/2Vof 0.008

    47、,0.017, and 0.022. The method of curving the flow consists in curving the tunnel walls to obtain the proper air-stream curvature and inserting upstream of the test section screens which give the proper velocity gradierit across the test section. CORRECTIONS The angle of attack at ti 1.2.5 .96 2.50 5

    48、.00 :“f: 19 7.60 2.12 10 2.43 E a:, 2.93 3.30 80 3”: 3.59 3.79 B”o 35 3.93 1: L. E. radius: 0.408 4.00 3.99 3.90 3.71 3.46 3.14 % 1.90 :Z .49 .02 cH/4 line-. +- 19.72 .-I FIGURE 4.-Dimensions of the horizontal tails tested. All dimensions are in inches. The effect of wing-fuselage interference on both the static longibudinal stability and damping. in pitch is shown in figure 14. An index to the data for the configurations investigated is given in table II. .-,- ., -


    注意事项

    本文(NASA NACA-TR-1096-1952 Experimental determination of the effect of horizontal-tail size tail length and vertical location on low-speed static longitudinal stability and damping in ing .pdf)为本站会员(syndromehi216)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开