欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TN-902-1943 Description of stress-strain curves by three parameters《通过三个参数对应力应变曲线的描述》.pdf

    • 资源ID:836417       资源大小:1.06MB        全文页数:32页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TN-902-1943 Description of stress-strain curves by three parameters《通过三个参数对应力应变曲线的描述》.pdf

    1、A Reproduced CopyOFNASAReproduced for NASAby theScientific and Technical Information FacilityFFNo 672 Aug 65Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-“l r IProvided by IHSNot for ResaleNo reproduction or networking permitted without license fro

    2、m IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.: . .Lu i,_ : . .:=_,qDESCRIPTION OF STRESS-STRAIN CURVES BY THREE PARAMETERSBy Walter Ramber

    3、g and William R, 0sgoodSUMMARYA simple formula is suggested for describing thestress-strain curve in terms of three parameters: namely,Young_s modulus and two secant yield strengths. Dimension-less charts are derived from this formula for determiningthe stress-strain curve, the tangent modulus, and

    4、thereduced modulus of a material for.which these three param-eters are given. Comoarison with the tensile and compres-sive data on aluminum-alloy, stainless-steel, and carbon-steel sheet in NACA Technical Note No. 840 indicates thatthe formula is adequate for most of these materials. Theformula does

    5、 not describe the behavior of alclad sheet,which shows a marked change in slope at low stress. Itseems probable that more than three parameters will benecessary to represent such stress-strain, curves adequately.INTRODUCTIONAn assembly of the tensile and compressive stress-strain .curves for sheet m

    6、aterials characteristic of air-craft construction is being obtained at the NationalBureau of Standards as the principal objective of a re-search project for the National Advisory Committee forAeronautics. Stress-strain, stress-devlation, secant-modulus, tangent-madulus, and reduced-modulus curves ha

    7、ve been presented in reference 1. for various grades of sheetmaterials of aluminum alloy, carbon steel, and chromium-nickel steel. A second objecti_e of the same researchproject is a search for yield parameter,a that give a betterdescription of the stress-strain curve than those in useat present.The

    8、 conventional descripti-on of the s.tress-straincurve of metals by the two parameters, Young_s modulus andyield strength, iS .inadequate for the efficient design ofmembers unless the material follows Hookes law up to. aProvided by IHSNot for ResaleNo reproduction or networking permitted without lice

    9、nse from IHS-,-,-“_/ /.k- p._r_ i _2 NACA Technical Note No. 902yiel_ point at which it yields indefinitely under constantstress. This special behavior is approached, for example,by certain steels (fig. l) and by certain low-strengthmagnesium alloys, but it is not characteristic of manyhigh-strength

    10、 alloys for aircraft.Examination of the stress-strain curves for aluminum-alloy sheet and chromium-nickel-steel sheet given in ref-erence 1 shows, particularly for the compressive stress-strain curves (figs. 2 and 3), a gradual transition fromthe elastic straight line for low loads toward the horizo

    11、n-tal line characterizing plastic behavior. The type oftransition varies widely. Hence there is no hope of reduc-ing all stress-strain curves to a single typ_ of curve byuniform stretching, or affine transformation of coordinates.This rules out the possibility, which exists for affinelyrelated stres

    12、s-strain curves (reference 2), of completedescription in terms of only two parameters, Youngts mod-ulus and secant yield strength. A minimum of three param-eters will be required to describe the changes in shapefor different materials.Several proposals have been made for describing thestress-strain

    13、curve in terms of three or more parametersDonnell (reference 5) suggests as two yield parametersthe stresses sI, s_, at which the slope of the stress-strain curve is equal to 3/4 E and 1/4 E, where _ isYoung_s modulus. The stress-strain curve is then derivedfrom these two parameters on the assumptio

    14、n that theslope varies linearly with the stress. This proceduregives a good descriotion of many tensile stress-straincurves of aluminum alloys, but it does not seem adequatefor the highly curved tangent-modulus curves found forthe compressive stress-strain properties in reference l,from which figure

    15、 4 is taken. Furthermore there arepractical difficulties in determining the stresses corre-sponding to a tangent modulus of 8/4 E and 1/4 Equickly from the stress-strain curve.Esser and Ahrend (reference 4) noticed that thestress-strain curves for many materials may be approxi-mated by two straight

    16、lines when they are clotted on log-log paper. They orooosed to define yield strength asthe stress at the intersection of these two lines.Description of the stress-strain curve above the yieldstrength _ould be obtained from the slope of the upperstraight line. The proposal is doubtless an advance ove

    17、rthe description by an offset yield strength. It has the . . . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-s-ey- Sp-/ (i)wheree strains streameySpnstrain corresponding to yield strengthproportional limitconstan_SyIf the iogarithmof both sides is

    18、taken in equation (_),it can be seen that equation (1) approaches Esser andAhrendls two straight lines as asymptotes for low and forhigh stress, respectively. The description of the transi-tion region is obtained by increasing the number of param-eters from three to four.In the study of plastic bend

    19、ing, the second authorfound an analytical expression containing three parametersthat appeared to be well adapted for representing stress-strain curves. Further examination of the exoression inthe light of the data given in reference 1 confirmed thisview.Provided by IHSNot for ResaleNo reproduction o

    20、r networking permitted without license from IHS-,-,-I4 NACA Technical Note No. 902: !ii iiANALYTI CAL EXPRE SSI ONStress-Strain CurveThe proposed analytical expression isE where K and n are constants.becomes the same as equation (2) if(2)Nadaits expression (1), r._Sp= 0ey _ = K(3)that is, if the pro

    21、portional limit is taken as zero, andthe requirement is dropped that ey is the strain corre-spond_ng to a yield stress Sy.The expression (2) may be written in dimensionlessform in terms of the follo_ving variables (reference 6):S IS 1J(4)where sI is the secant yield strength, equal to theordinate of

    22、 the intersection with the stress-strain curveof a line through the origin having a slope equal to m I E, 10) the experimentalvalues of tangent modulus for stresses below the secantyield strength sI differ less than _0.07 E from thevalues corresponding to equation (15). In the case of thevalues with

    23、 the sharp knee (fig. 21) the maximum differ-ence was considerably greater. These differences do notdetract seriously from the usefulness of equation (2),however, since the region in which the agreement is notgood comprises a limited stress range. Consequently, inthis range the difference between th

    24、e experimental andthe computed values of O corresponding to a given valueof tangent modulus are small.The comparison was confined to the materials in ref-erence l, which did not include alclad aluminum alloys.In the alclad aluminum alloys a change in slope at lowstress is observed which corresponds

    25、to the yielding ofthe aluminum coating. It seems probable that inclusionof this effect will require the addition of at least onemore parameter to the three contained in equation (2).EXAMPLE FOR APPLICATION 0F THREE-PARAMETER METHOD/Computations based on elastic theory give a value ofSse = 87 l0 poun

    26、ds per inch efor the critical compressive stress of a given specimen.The material of the specimen has the compressive stress-strain curve shown in figuAe 22. It is desired to deter-mine the stress:E rS r - SeEwhich is an estimate for the critical stress after takingaccount of the olastic yielding of

    27、 the material.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-12 NACA Technical Note No. 902, From figure 22 are obtained the two secant yieldstrengths|s_ = 43.0 X 103 pounds per inch sss = 38.0 x i03 poundsper inch sso thatS 1 - I. 132S_From figure

    28、i0 this corresponds to a shaPe parametern= 8.15Entering figure 9 with this value of n and with th_ratioIgivess_1- _ 43.0 _ 0.494se 87.0_E _ 0.473Eso that the corrected critical stress is3 3“ 2s r = 0.473 87 lO = 41.2 X lO pounds per inchNational Bureau of Standards,Washington, D. C., April 8, 1943.P

    29、rovided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-j?L NACA Technical Note No. 902 13REFERENCE Si. Aitchison, C. S., and Miller, James A.: Tensile andPack Compressive Tests of Some Sheets of AluminumAlloy, 1025 Carbon Steel, and Chremium-Nickel Steel.T.N

    30、. No. 840, NACA, 1942.2. 0sgood, W. R. : A Rational Definition of Yield Strength.A.S.M.E. Jour. App. Mech., vol. 7, no. 2, June 1940,pp. A61-A62.3. Donnell, L. H.: Suggested New Definitions for Propor-tional Limit and Yield Point. Mech. Engineering,vol. 60, no. ll, Nov. 1938, pp. 837-38._. Esser, Ha

    31、ns, and Ahrend, H.: Kann die 0.2% Grenzedurch eine ubereinkommenfreie Dehngrenze ersetztwerden. Arch. f. Eisenhu_tenw., vol. 13, no. 10,1939-40, pp. 425-428.5. Holmquist, J. L., and N_dai, A.: A Theoretical andExoerimental Approach to the Problem of Collapseof Deep-Well Casing. Paper presented at 20

    32、th AnnualMeeting, Am. Petroleum Inst., Chicago, Nov. 1939.6. 0sgood, W. R.: Column Curves and Stress-Strain Diagrams.Nat. Bur. of Standards Jour. Res., vol. 9, Oct. 1932,pp. 571-82.7o Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill Book Co., Inc., New York, N. Y., 1936.8. von Karman, Th.: U

    33、ntersuchungen uber Knickfestigkeit,_._iitteilungen uber Forschungsarbeiten. Ver. deutsch.Ing., Heft 81, 1910.rProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-“ . . L!i_i_/.NACATechnical Note No. 902ZOO, . :- -Fconsverse coM,oress/on Icompress/on_.50

    34、_1Figs. 4,50 .50 ZOOS/8 _tdFigure 4.- Non-linear variation of tangent modulus withstress; chromium-nickel steel, full-hard,thickness 0.020 inch.5640_3z_ee16I/I/,/.S=_e i Il !IIl1/Jo .002 .004 .006 .008S_rainFigure 5.- Determination of secantyield strength./Provided by IHSNot for ResaleNo reproductio

    35、n or networking permitted without license from IHS-,-,-. .- , ,!#.NAC A Tli,chnlcal#“8I_S/S = p0L0 ,F;q. 6_) +_ _o_D IIO) U) o ) ,-_ -_ _|,d(D%,-4X,7II“i I-,.-I 4-3or2I=I ,-44-3.- ,-4 0. Cc:)c_.r.-I“r _11Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-

    36、,-: . .“ . . _ I INACA Technical“ ! “ : “: /, i -i/ “ “ :-iiProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA Technical Note No. 90_ Fig. I0 i/5.010.5,9.08.04.025/.5 /.0 /./I , It I P J i I llqilll I F I I I I I I t I t I I I It II tllltl ILllll_l

    37、 /IJllllll JlllillJl LLIIIII/.2 /.,3 /.4 /.5 /.6 /.7 /-8 /.9 at.O_,/e=I0.- Relation between n and Sl/S 2 .Figurei?log -Vn=l_-zogProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. !NACA Technical Note No. 902200150“/005OO,I0080_buf2O0Figs. 1,12I I I I

    38、I I I I IFigure II.- Experimental and computed .,_,-,_“stress-strain curves_ -_-Cr-Ni steel, fUlll-hord, thicknessl_J _“ /-110.020 inch. X/r“ _ lI /X.; _ / l ._s. 7S .:“Tension, dred puledd Longitudinal AFrc/n$ verse. +Compression,Long/ltud/no/ oFf or?svef s8. xII2_00.E _ “ $z n_1000/b/s#7 in.2#,770

    39、 18#. 7/473 4.8329,010 1800/32.7 zl.5826,/20 8Z3 5Z4 20829. 660 205. 6/62. 7 zl.81002 004 .006StrainMeos- Cor_-Fension, ured puledL ongi fudino/ a7tons verse. +CompressionL ongi fud/nol oTronsver-se. x.OO8 .010IE s, s, tt/000 Ib/sq in.IOEO0 52.2 5/.8 121.410,430 4_ ,#ll.6 10.93 _./06#.0 43.2 39./ 98

    40、8I0, 710 48.0 45.6 13.43.012/.002A Jc2a I um Inumi r_ch.I I0O4. X._._;- _-_- - _ -:d:o _c- Experimental ancl computed-stress-strain curves;alloy 24S-T, thickness 0.064I006 .008 . OI 0 .012S#-oinProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. : _ .:

    41、 :_: :i :, i !_._/: : :L : _:, : NACA Technical Nofe No. 902/008OZOO.8O.8OB“.40.c_f0Meas- Cam- E _ sz nb_ r Tensi-_, ured puled I000 Iblsq in. -_ Longitudinal _ - - 30,060 62S $38 ooTransverse. + - 3/,620 64/ GS,/ oo- Compression .Longitudinal o 30,780 b_.b 61.0 ooTransverse. x 32,660 G3.4 63.3 ooi

    42、IiO01 002 .003 .004SfruinFigure t3.- Experimenfol end compufed sTress-sfroin curves, 1025corbon-sfeel, fhickness=O.054“.rlo 292qMu far / e I , /nchCr=/V/“ sfeel full-hard fh. 0.020 Iomq.,n =2oo3II2_00_QFigs. 13,140 .20 .40 .80 .80 LO0 lQO /,40G=S/8_Figure 14.- Experimenfal ond compufed fongenf modul

    43、iin compression,2n3.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,- , ,. LI IL,.!7i:- L:_:i!:NACA Technical Note No. 902LO0 _ _ ,3.10X_a_ _ 3.08 “.80 _.60-E-.40Figs. 15,16I I I I I I I I IMo fer / o I Incho 3.48 OczNi steel 1/4 hard fh. 0020 long.+

    44、3.83 /12 -314 “ “ full “ “ _ “. .024 “I/4 “ “ .020 trans._0 Xo_ _ o.20 o t0CDODI00_Q0 .20 .40 ._0 .80 /.00 /.20 /.40d=S/S,Figure t5.- Experimenfa and comoufed fomc)enf moduli incompPessiom, 3n4.0498 Cr-/vi steel ful/-hord 0.0275 long.1.00 -_= A 410 1/2 “ .0 0 tr- s.+,.18 3i4 x,.si ; ,_ll ;t_._.ge .o

    45、2.+.80 -,-,_ ,.E,“20v . 50 .20 .40 .80 .80 /.00 /20 140Figure 16.- ExpePimenfal and compufed fongen moduli incompnessioP, 4n5.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-,. . =* #: L L :,. ;i-.Technical Note No. 902/.00 -.80.60 .in compression 6n

    46、7%(.20n Mc/fe/-iol Incho 6.72 Or-N/Sfeel full-ho/-d fh. 0.02Figs. 17, 1875 tr-ons.LOOJ0II00_Q. _0 .20 .40 ._0 .80 ZOO 120d =sis,ZOO.80._0E-E-.40.2O71 Mafer/ala Z82 Al-ol/oy 24S-To 7.60 “ Inchfh. 0.08/ /on_7-“ .032 “I IFigure 18.-Experimental andco.mputed tangent moduin compresslon. 7n8. Irl=70 20 dO

    47、 60 .80d=s/slzOO 120Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. .-. , r:iNACA Technical Note No. 902.80 _n AAofer/d/E o 8.59 AI-olloy 24S-RTth. long.7_- + 8.32 “x 8.018.20._0.2OIFigure 19-Experimenta end com-puted tangent moduli ncompression. _90ZOO I.806OE-E-4O.20 4O 60 .80#=s/s,ox 9.079.88+ 9.O7Mafer/al InchA/-o/oy/TS-T fh.0.032long 24S- T -084 “ “243-RT .20 -Figure 20-Experimenfo and com-puted tangent moduli ncompression. 9n/O0 20 .40 6o .8od-s/s,Figs. I9,20LOOdII00_Qv.-_ =8I


    注意事项

    本文(NASA NACA-TN-902-1943 Description of stress-strain curves by three parameters《通过三个参数对应力应变曲线的描述》.pdf)为本站会员(terrorscript155)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开